11 resultados para fcs
Resumo:
The aim of this study was to investigate the effects of elevated D-glucose concentrations on vascular smooth muscle cell (VSMC) expression of the platelet-derived growth factor (PDGF) beta receptor and VSMC migratory behavior. Immunoprecipitation, immunofluorescent staining, and RT-PCR of human VSMCs showed that elevated D-glucose induced an increase in the PDGF beta receptor that was inhibited by phosphatidylinositol 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathway inhibitors. Exposure to 25 mmol/l D-glucose (HG) induced increased phosphorylation of protein kinase B (PKB) and extracellular-regulated kinase (ERK). All HG chemotaxis assays (with either 10 days' preincubation in HG or no preincubation) in a FCS or PDGF-BB gradient showed positive chemotaxis, whereas those in 5 mmol/l D-glucose did not. Assays were also run with concentrations ranging from 5 to 25 mmol/l D-glucose. Chemotaxis was induced at concentrations >9 mmol/l D-glucose. An anti-PDGF beta receptor antibody inhibited glucose-potentiated VSMC chemotaxis, as did the inhibitors for the PI3K and MAPK pathways. This study has shown that small increases in D-glucose concentration, for a short period, increase VSMC expression of the PDGF beta receptor and VSMC sensitivity to chemotactic factors in serum, leading to altered migratory behavior in vitro. It is probable that similar processes occur in vivo with glucose-enhanced chemotaxis of VSMCs, operating through PDGF beta receptor-operated pathways, contributing to the accelerated formation of atheroma in diabetes.
Resumo:
PURPOSE. This study evaluated the effect of transforming growth factor (TGF)-ß2 and anti-TGF-ß2 antibody in a rodent model of posterior capsule opacification (PCO). METHODS. An extracapsular lens extraction (ECLE) was performed in 72 Sprague-Dawley rats. At the end of the procedure, 10 µL TGF-ß2 (TGF-ß2-treated group), fetal calf serum (FCS)/phosphate- buffered saline (PBS; FCS/PBS-treated control group), a human monoclonal TGF-ß2 antibody (anti-TGF-ß2-treated group), or a null control IgG4 antibody (null antibody-treated control group) was injected into the capsule. Animals were killed 3 and 14 days postoperatively. Eyes were evaluated clinically prior to euthanatization, then enucleated and processed for light microscopy and immunohistochemistry afterward. PCO was evaluated clinically and histopathologically. Student's t-test and ? were used to assess differences between groups. RESULTS. There were no statistically significant clinical or histopathological differences in degree of PCO between the TGF-ß2- and FCS/PBS-treated groups at 3 and 14 days after ECLE. Nor were there differences between the anti-TGF-ß2- and the null antibody-treated groups, with the exception of the histopathology score for capsule wrinkling 3 days after ECLE (P = 0.02). a-Smooth-muscle actin staining was observed in the lens capsular bag only in areas where there was close contact with the iris. CONCLUSIONS. No sustained effect of TGF-ß2 or anti-TGF-ß2 antibody on PCO was found in rodents at the dose and timing administered in this study. Iris cells may play a role in the process of epithelial mesenchymal transition linked to PCO. Copyright © Association for Research in Vision and Ophthalmology.
Resumo:
Purpose. To develop a protocol for isolating and culturing murine adult retinal microglia and to characterize the phenotype and function of the cultured cells. Method. Retinal single-cell suspensions were prepared from adult MF1 mice. Culture conditions including culture medium, growth factors, seeding cell density, and purification of microglia from the mixed cultures were optimised. Cultured retinal microglial cells were phenotyped using the surface markers CD45, CD11b, and F4/80. Their ability to secrete proinflammatory cytokines in response to lipopolysaccharide (LPS) stimulation was examined using cytometric bead array (CBA) assay. Results. Higher yield was obtained when retinal single-cell suspension was cultured at the density of cells per cm2 in Dulbecco’s modified Eagle medium (DMEM)/F12 + Glutamax supplement with 20% fetal calf serum (FCS) and 20% L929 supernatant. We identified day 10 to be the optimum day of microglial isolation. Over 98% of the cells isolated were positive for CD45, CD11b, and F4/80. After stimulating with LPS they were able to secrete proinflammatory cytokines such as IL-6 and TNF-α and express CD86, CD40, and MHC-II. Conclusion. We have developed a simple method for isolating and culturing retinal microglia from adult mice.
Resumo:
Activated protein C (APC) protects against sepsis in animal models and inhibits the lipopolysacharide (LPS)-induced elaboration of proinflammatory cytokines from monocytes. The molecular mechanism responsible for this property is unknown. We assessed the effect of APC on LPS-induced tumour necrosis factor alpha (TNF-alpha) production and on the activation of the central proinflammatory transcription factor nuclear factor-kappaB (NF-kappaB) in a THP-1 cell line. Cells were preincubated with varying concentrations of APC (200 microg/ml, 100 microg/ml and 20 microg/ml) before addition of LPS (100 ng/ml and 10 microg/ml). APC inhibited LPS-induced production of TNF-alpha both in the presence and absence of fetal calf serum (FCS), although the effect was less marked with 10% FCS. APC also inhibited LPS-induced activation of NF-kappaB, with APC (200 microg/ml) abolishing the effect of LPS (100 ng/ml). The ability of APC to inhibit LPS-induced translocation of NF-kappaB is likely to be a significant event given the critical role of the latter in the host inflammatory response.
Resumo:
BACKGROUND: Cigarette smoking is one of the most significant risk factors in the development and further advancement of inflammatory periodontal disease, however, the role of either nicotine or its primary metabolite cotinine in the progression of periodontitis is unclear. This study aimed to investigate the effects of nicotine and cotinine on the attachment and growth of fibroblasts derived from human periodontal ligament (PDL).
METHODS: Primary cultures were prepared from the roots of extracted premolar teeth. Cells were used at both low (P3 to P5) and high (P11 to P13) passage. Cell numbers were determined over 14 days using either the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay or with a Coulter counter. Cultures were exposed to culture medium supplemented with 1) 15% fetal calf serum (FCS) only; 2) 1% FCS only; 3) 1% FCS and nicotine (concentration range 5 ng/ml to 10 mg/ml); or 4) 1% FCS and cotinine (concentration range 0.5 ng/ml to 10 microg/ml).
RESULTS: Nicotine significantly (P <0.05, by ANOVA) inhibits attachment and growth of low passage cells at concentrations >1 mg/ml and high passage PDL fibroblasts at concentrations >0.5 mg/ml. Cotinine, at the highest concentration used (10 microg/ml), appeared to inhibit attachment and growth of both low and high passage fibroblasts but this was not statistically significant (P >0.05, by ANOVA).
CONCLUSIONS: Tobacco products inhibit attachment and growth of human PDL fibroblasts. This may partly explain the role of these substances in the progression of periodontitis.
Resumo:
Background: Protease activated receptors (PAR) belong to a subfamily of G protein coupled receptors. They consist of seven transmembrane domains but are not classical receptors as their agonist is a circulating serine proteinase. This proteinase cleaves an N-terminal extracellular domain of the receptor to reveal a new N-terminal tethered ligand which binds intramolecularly, thus converting an extracellular proteolytic event into a transmembrane signal. Therefore, the cleavage and activation of PARs provide a mechanism whereby proteinases can directly influence the inflammatory response. Gingival hyperplasia or gingival enlargement is a side effect of some drugs such as cyclosporine, a potent immunosuppressant. To date, the potential role of PAR in the inflammation associated with the pathogenesis of gingival overgrowth has not been studied. Objectives: The present study was designed to determine whether proteinases derived from extracts of cyclosporine induced hyperplasia were capable of activating PAR in vitro. Methods: Cell lysates were derived from tissue obtained from gingival overgrowth of patients requiring surgical excision. Cell lines over-expressing PARs were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% foetal calf serum (FCS) in 5% CO2. The cells were treated with gingival overgrowth lysates and agonist stimulated calcium release from the cells was recorded using the Fluo-4-Direct™ Calcium Assay Kit from Invitrogen, according to manufacturer's instructions. Results: Calcium release by activated PAR on tumour cells was detected in those treated with gingival hyperplasia lysates. Samples from healthy gingival fibroblasts did not elicit this response. Conclusions: The identification of mediators of the molecular events central to the inflammatory phenotype elicited by gingival hyperplasia is important. To this end, our experiments show that in vitro, enzymes derived from overgrown gingival tissue are capable of activating PAR and thereby provide evidence for the potential role of PAR in sustaining gingival hyperplasia.
Resumo:
Background: The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel expression in gingival fibroblasts is currently limited. The role of non-neuronal TRP channel expression is an area of much research interest particularly since TRP channel activation has recently been hypothesised to be associated with inflammation. Objectives: The present study was designed to determine the expression of TRPV1, TRPV2, TRPV3 and TRPV4 on human gingival fibroblasts. Methods: Human gingival fibroblasts were derived by explant culture from surgical tissue following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Cell lysates of gingival fibroblasts were electrophoresed and blotted on to nitrocellulose before probing with specific anti-TRP antibodies. Immunoreactive bands were detected using anti-species antibodies and chemiluminescent detection. Results: Gingival fibroblasts were shown to express proteins corresponding to the TRPV1, TRPV2, TRPV3 and TRPV4 channels as determined by western blotting. Conclusion: This study reports for the first time the expression of TRPV1, TRPV2, TRPV3 and TRPV4 by gingival fibroblasts. Knowledge of the expression of TRP channels by human gingival fibroblasts will guide future research on the roles of TRP channels in sensing the external environment in the oral cavity.
Resumo:
Introduction: Transient receptor potential (TRP) channels are widely, but not uniformly, distributed in tissues. To date the dominant focus of attention has been on TRP expression and functionality in neurons. However, their expression and activation in selected non-neuronal cells suggest TRPs have a potential role in coordinating cross-talk during the inflammatory process. Fibroblasts comprise the major cell type in the dental pulp and play an important role in pulpal inflammation. Objectives: The aim of this study was to investigate the expression and functionality of the TRP channels TRPA1, TRPM8, TRPV4 and TRPV1 in human dental pulp fibroblasts. Methods: Dental pulp fibroblasts were derived by explant culture of pulps removed from extracted healthy teeth. Fibroblasts were cultured in DMEM supplemented with 10% FCS, 100U/ml penicillin and 100µg/ml streptomycin. Protein expression of TRP channels was investigated by SDS- polyacrylamide gel electrophoresis and Western blotting of cell lysates from fibroblast cells in culture. TRPA1, TRPM8, TRPV4 and TRPV1 expression was determined by specific antibodies, detected using appropriate anti-species antibodies and chemiluminescence. Functionality of TRP channels was determined by Ca2+ microfluorimetry. Cells were grown on cover slips and incubated with Fura 2AM prior to stimulation with icilin (TRPA1 agonist), menthol (TRPM8 agonist), 4 alpha-phorbol 12,13-didecanoate (4alphaPDD) (TRPV4 agonist) or capsaicin (TRPV1 agonist). Emitted fluorescence (F340/F380) was used to determine intracellular [Ca2+] levels. Results: Fibroblast expression of TRPA1, TRPM8, TRPV4 and TRPV1 was confirmed at the protein level by Western blotting. Increased intracellular [Ca2+] levels in response to icillin, methanol, 4alphaPDD and capsacin, indicated functional expression of TRPA1, TRPM8, TRPV4 and TRPV respectively. Conclusions: The presence and functionality of TRP channels on dental pulp fibroblasts suggests a potential role for these cells in the pulpal neurogenic inflammatory response. (Supported by a research grant from the Royal College of Surgeons of Edinburgh).
Resumo:
Background: The oral cavity is a frontline barrier which is often exposed to physical trauma and noxious substances, leading to pro-inflammatory responses designed to be protective in nature. The transient receptor potential (TRP) super family of ion channels is believed to play a critical role in sensory physiology, acting as transducers for thermal, mechanical and chemical stimuli. Our understanding of the role of TRP channel activation in gingival and periodontal inflammation is currently limited. Gingival fibroblasts are the most abundant structural cell in periodontal tissues and we hypothesised that they may have a role in the inflammatory response associated with TRP channel activation. Objectives: The present study was designed to determine whether the TRPV1 agonist capsaicin could elicit a pro-inflammatory response in gingival fibroblasts in vitro by up-regulation of interleukin-8 (IL-8) production. Methods: Gingival fibroblasts were derived by explant culture from surgical tissues following ethical approval. Cells were maintained in Dulbecco's modified Eagle's medium (DMEM), containing 10% fetal calf serum (FCS) in 5% CO2. Following treatment of gingival fibroblasts with capsaicin, IL-8 levels were measured by ELISA. The potential cytotoxicity of capsaicin was determined by the MTT assay. Results: In gingival fibroblasts treated with the TRPV1 agonist capsaicin (10µM), IL-8 production was significantly increased compared with untreated control cells. Capsaicin was shown not to be toxic to gingival fibroblasts at the concentrations studied. Conclusion: The identification of factors that modulate pro-inflammatory cytokine production is important for our understanding of gingival and periodontal inflammation. This study reports for the first time that gingival fibroblasts respond to the TRPV1 agonist capsaicin by increased production of IL-8. Activation of TRPV1 on gingival fibroblasts could therefore have an important role in initiating and sustaining the inflammatory response associated with periodontal diseases
Resumo:
Objectives: Receptor Activator of NF-kappaB ligand (RANKL), through binding to its receptor (RANK), plays an important role in osteoclast differentiation and activation. Conversely, osteoprotegerin (OPG), a decoy receptor for RANKL, inhibits osteoclastogenesis and subsequent bone turnover. Little is known about the role of resident periodontal ligament fibroblasts in regulating bone turnover. The aim of this study was to determine (i) if periodontal ligament fibroblasts produced OPG in vitro and (ii) the effects of IL-1b and TGF-b1 on OPG expression. Methods: Three human periodontal ligament fibroblast populations, developed by explant culture, were grown to confluence in 6-well plates in DMEM supplemented with 10% FCS. Cells were washed in HBSS and then cultured for an additional 48 hours in serum-free media supplemented with IL-1b or TGF-b1 at 10ng/ml. OPG expression levels in the conditioned medium were determined by ELISA (R&D Systems, UK) and confirmed by Western blot. Results: All three fibroblast strains produced quantifiable levels of OPG. Both IL-1b and, to a lesser extent, TGF-b1 significantly stimulated OPG expression in all fibroblast strains (p<0.05). Pre-incubation of samples with N-glycosidase F prior to Western blots indicated glycosylation of expressed OPG. Conclusions: These data indicate that periodontal ligament fibroblasts can regulate osteoclast activation via the RANK/RANKL signalling pathway. These fibroblasts may play an important role in regulating bone turnover both in periodontal disease and orthodontic tooth movement.
Resumo:
Objectives: Unlike adult dermal wounds, the oral mucosa demonstrates preferential healing characterized by rapid remodeling and re-epithelialisation, with minimal scar formation. Secretory leukocyte protease inhibitor (SLPI) is an epithelial-derived factor with potential for promoting scarless repair. The aims of this study were to: (i) investigate the directed migratory (chemotaxis) response of oral and skin fibroblasts to various concentrations of SLPI; and (ii) compare migratory speed of the two cell types. Methods: Paired oral and skin fibroblasts were seeded at 2x104 cells in six well plates containing glass coverslips, and cultured in DMEM supplemented with 10% FCS for 48hours. Following a period of serum starvation (18hours in DMEM plus 0.5% BSA), coverslips were incorporated within a Dunn chemotaxis chamber containing DMEM with 0.5% BSA +/- SLPI gradients at 0.5, 1 or 2µM concentrations. Using microscopy, the migratory behaviour of cells was digitally captured every 10mins for 18hours, traced with JCell tracking software and resulting co-ordinates statistically analysed using Mathmatica software. Results: At all concentrations SLPI was a significant chemoattractant (p<0.01) for both cell types. However, skin fibroblasts migrated significantly faster than oral cells at each SLPI concentration, with greatest effect observed at the highest dose (skin: 32.0±0.47µm/hr, oral: 13.6±0.23µm/hr). Conclusion: SLPI is a chemoattractant for both oral and skin fibroblasts, and may play an important role in fibroblast recruitment during wound healing. This work was funded by the R&D Office, N.Ireland.