9 resultados para enzymology
Resumo:
Reduced galactose 1-phosphate uridylyltransferase (GAIT) activity is associated with the genetic disease type 1 galactosemia. This results in an increase in the cellular concentration of galactose 1-phosphate. The accumulation of this toxic metabolite, combined with aberrant glycoprotein and glycolipid biosynthesis, is likely to be the major factor in molecular pathology. The mechanism of GAIT was established through classical enzymological methods to be a substituted enzyme in which the reaction with UDP-glucose results in the formation of a covalent, UMP-histidine adduct in the active site. The uridylated enzyme can then react with galactose 1-phosphate to form UDP-galactose. The structure of the enzyme from Escherichia coli reveals a homodimer containing one zinc (II) and one iron (11) ion per subunit. This enzymological and structural knowledge provides the basis for understanding the biochemistry of this critical step in the Leloir pathway. However, a high-resolution crystal structure of human GAIT is required to assist greater understanding of the effects of disease-associated mutations. (C) 2011 IUBMB IUBMB Life, 63(9): 694-700, 2011
Resumo:
Accurate measurement of the quantitative aspects of enzyme-catalysed reactions
is critical for a deeper understanding of their mechanisms, for their exploitation in biotechnology and for targeting enzymes by drug-like molecules. It is important to move beyond basic enzyme kinetics as encapsulated in the Michaelis-Menten equation. The type and magnitude of inhibition should be determined. Since the majority of enzyme-catalysed reactions involve more than one substrate, it is critical to understand how to treat these reactions quantitatively and how their kinetic behaviour depends on the type of mechanism occurring.
Some reactions do not conform to “standard” Michaelis-Menten treatment and exhibit phenomena such as cooperativity. Again it is important to put these phenomena onto a quantitative basis. Similarly the treatment of the effects of pH on enzymes is often vague and uninformative without a proper quantitative treatment. This review brings together tools and approaches for dealing with enzymes quantitatively together with original references for these approaches.
Resumo:
Complex I (NADH: ubiquinone oxidoreductase) is generally regarded as one of the major sources of mitochondrial reactive oxygen species (ROS). Mitochondrial membranes from the obligate aerobic yeast Yarrowia lipolytica, as well as the purified and reconstituted enzyme, can be used to measure complex I-dependent generation of superoxide (O-2(center dot-)). The use of isolated complex I excludes interference with other respiratory chain complexes and matrix enzymes during superoxide dismutase-sensitive reduction of acetylated cytochrome c. Alternately. hydrogen peroxide formation can be measured by the Amplex Red/horseradish peroxidase assay. Both methods allow the determination of complex I-generated ROS, depending on substrates (NADH, artificial ubiquinones), membrane potential, and active/deactive transition. ROS production by Yorrowia complex I in the
Resumo:
BACKGROUND: In experimental models of retinopathy of prematurity (ROP), a vasoproliferative disorder of the retina, retinal lesions are usually assessed by morphological examination. However, studies suggest that the polyamine system may be useful in monitoring proliferation processes. For this reason, polyamine concentrations in rat erythrocytes (RBC) and the regulation of polyamine system in rat eyes under the conditions relevant to ROP were investigated. METHODS: Newborn Wistar rats were reared in room air (control) or exposed first to hyperoxia (60% or 80% oxygen, 2 weeks) and then to normoxia (relative hypoxia, 1 or 2 weeks). Blood was collected from orbital vessels at 2 weeks of age and before death. Polyamine system-related enzyme activities were measured in retina and lens with radioassays. Polyamines were quantified by fluorometry after extraction, dansylation and HPLC separation. RESULTS: Oxygen (80% only) significantly decreased RBC polyamine concentrations, which then markedly increased after rats were transferred for a week to normal air, suggesting retardation of growth processes and compensatory stimulation, respectively. However, polyamine system changes in the rat eye were not so pronounced. Enzyme activities and polyamine concentrations tended to be lower in retina after hyperoxia and were only slightly higher, with the exception of ornithine decarboxylase, after a subsequent 1 week of normoxia. In litters subjected to normoxia for longer periods no changes were found. CONCLUSION: The transient and short-lived alteration in polyamine metabolism, especially in the eye, suggests that exposure of newborn rats to high oxygen supplementation followed by normoxia does not necessarily result in marked retinopathy.
Resumo:
The endosomal system provides a route whereby nutrients, viruses, and receptors are internalized. During the course of endocytosis, activated receptors can accumulate within endosomal structures and certain signal-transducing molecules can be recruited to endosomal membranes. In the context of signaling and cancer, they provide platforms within the cell from which signals can be potentiated or attenuated. Regulation of the duration of receptor signaling is a pivotal means of refining growth responses in cells. In cancers, this is often considered in terms of mutations that affect receptor tyrosine kinases and maintain them in hyperactivated states of dimerization and/or phosphorylation. However, disruption to the regulatory control exerted by the assembly of protein complexes within the endosomal network can also contribute to disease among which oncogenesis is characterized in part by dysregulated growth, enhanced cell survival, and changes in the expression of markers of differentiation. In this chapter, we will discuss the role of proteins that regulate in endocytosis as tumor suppressors or oncogenes and how changing the fate of internalized receptors and concomitant endosomal signaling can contribute to cancer.