13 resultados para energy deposited
Resumo:
The radiation-induced bystander effect challenges the accepted paradigm of direct DNA damage in response to energy deposition driving the biological consequences of radiation exposure. With the bystander response, cells which have not been directly exposed to radiation respond to their neighbours being targeted. In our own studies we have used novel targeted microbeam approaches to specifically irradiate parts of individual cells within a population to quantify the bystander response and obtain mechanistic information. Using this approach it has become clear that energy deposited by radiation in nuclear DNA is not required to trigger the effect, with cytoplasmic irradiation required. Irradiated cells also trigger a bystander response regardless of whether they themselves live or die, suggesting that the phenotype of the targeted cell is not a determining factor. Despite this however, a range of evidence has shown that repair status is important for dealing with the consequences of a bystander signal. Importantly, repair processes involved in the processing of dsb appear to be involved suggesting that the bystander response involves the delayed or indirect production of dsb-type lesions in bystander cells. Whether these are infact true dsb or complexes of oxidised bases in combination with strand breaks and the mechanisms for their formation, remains to be elucidated.
Resumo:
Radiation biophysics has sought to understand at a molecular level, the mechanisms through which ionizing radiations damage DNA, and other molecules within living cells. The complexity of lesions produced in the DNA by ionizing radiations is thought to depend on the amount of energy deposited at the site of each lesion. To study the relationship between the energy deposited and the damage produced, we have developed novel techniques for irradiating dry prasmid DNA, partially re-hydrated DNA and DNA in solution using monochromatic vacuum-UV synchrotron radiation. We have used photons in the energy range 7-150 eV, corresponding to the range of energies typically involved in the efficient production of DNA single-strand (SSB), and double-strand breaks (DSB) by ionizing radiation. The data show that both types of breaks are produced at all energies investigated (with, or without water present). Also, the energy dependence for DSB induction follows a similar trend to SSB induction but at a 20-30-fold reduced incidence, suggesting a common precursor for both types of damage. Preliminary studies where DNA has been irradiated in solution indicate a change in the shape of the dose-effect curve (from linear, to linear-quadratic for double-strand break induction) and a large increase in sensitivity due to the presence of water.
Resumo:
All ionizing radiations deposit energy stochastically along their tracks. The resulting distribution of energies deposited in a small target such as the DNA helix leads to a corresponding spectrum in the severity of damage produced. So far, most information about the probable spectra of DNA lesion complexity has come from Monte Carlo studies which endeavour to model the relationship between the energy deposited in DNA and the damage induced. The aim of this paper is to establish methods of determining this relationship by irradiating pBR322 plasmid DNA using low energy electrons with energies comparable with the minimum energy thought to produce critical damage. The technique of agarose gel electrophoresis has been used to ascertain the fraction of DNA single- and double-strand breaks induced by monoenergetic electrons with energies as low as 25 eV. Our data show that the threshold electron energy for induction of single-strand breaks is
Resumo:
The development of a plasma discharge at low voltage (200-600 V) in saline solution is characterized using fast and standard CCD camera imaging. Vapor formation, plasma formation, and vapor collapse and subsequent pressure wave propagation are observed. If, with increasing voltage, the total energy deposited is kept approximately constant, the sequence and nature of events are similar but develop faster and more reproducibly at the higher voltages. This is attributed to the slower temporal evolution of the vapor layer at lower voltages which means a greater sensitivity to hydrodynamic instabilities at the vapor-liquid interface.
Resumo:
Energy release from radioactive decays contributes significantly to supernova light curves. Previous works, which considered the energy deposited by ?-rays and positrons produced by Ni, Co, Ni, Co, Ti and Sc, have been quite successful in explaining the light curves of both core collapse and thermonuclear supernovae. We point out that Auger and internal conversion electrons, together with the associated X-ray cascade, constitute an additional heat source. When a supernova is transparent to ?-rays, these electrons can contribute significantly to light curves for reasonable nucleosynthetic yields. In particular, the electrons emitted in the decay of Co, which are largely due to internal conversion from a fortuitously low-lying 3/2 state in the daughter Fe, constitute an additional significant energy-deposition channel. We show that when the heating by these electrons is accounted for, a slow-down in the light curve of SN 1998bw is naturally obtained for typical hypernova nucleosynthetic yields. Additionally, we show that for generic Type Ia supernova yields, the Auger electrons emitted in the ground-state to ground-state electron capture decay of Fe exceed the energy released by the Ti decay chain for many years after the explosion. © 2009 RAS.
Resumo:
Aims. We investigated the response of the solar atmosphere to non-thermal electron beam heating using the radiative transfer and hydrodynamics modelling code RADYN. The temporal evolution of the parameters that describe the non-thermal electron energy distribution were derived from hard X-ray observations of a particular flare, and we compared the modelled and observed parameters.
Methods. The evolution of the non-thermal electron beam parameters during the X1.5 solar flare on 2011 March 9 were obtained from analysis of RHESSI X-ray spectra. The RADYN flare model was allowed to evolve for 110 s, after which the electron beam heating was ended, and was then allowed to continue evolving for a further 300 s. The modelled flare parameters were compared to the observed parameters determined from extreme-ultraviolet spectroscopy.
Results. The model produced a hotter and denser flare loop than that observed and also cooled more rapidly, suggesting that additional energy input in the decay phase of the flare is required. In the explosive evaporation phase a region of high-density cool material propagated upward through the corona. This material underwent a rapid increase in temperature as it was unable to radiate away all of the energy deposited across it by the non-thermal electron beam and via thermal conduction. A narrow and high-density (ne ≤ 1015 cm-3) region at the base of the flare transition region was the source of optical line emission in the model atmosphere. The collision-stopping depth of electrons was calculated throughout the evolution of the flare, and it was found that the compression of the lower atmosphere may permit electrons to penetrate farther into a flaring atmosphere compared to a quiet Sun atmosphere.
Resumo:
Electrical transport and structural properties of platinum nanowires, deposited using the focussed ion beam method have been investigated. Energy dispersive X-ray spectroscopy reveals metal-rich grains (atomic composition 31% Pt and 50% Ga) in a largely non-metallic matrix of C, O and Si. Resistivity measurements (15-300 K) reveal a negative temperature coefficient with the room-temperature resistivity 80-300 times higher than that of bulk Pt. Temperature dependent current-voltage characteristics exhibit non-linear behaviour in the entire range investigated. The conductance spectra indicate increasing non-linearity with decreasing temperature, reaching 4% at 15 K. The observed electrical behaviour is explained in terms of a model for inter-grain tunnelling in disordered media, a mechanism that is consistent with the strongly disordered nature of the nanowires observed in the structure and composition analysis.
Resumo:
Gold nanoparticles (GNPs) are of considerable interest for use as a radiosensitizer, because of their biocompatibility and their ability to increase dose deposited because of their high mass energy absorption coefficient. Their sensitizing properties have been verified experimentally, but a discrepancy between the experimental results and theoretical predictions suggests that the sensitizing effect does not depend solely on gold's superior absorption of energetic photons. This work presents the results of three sets of experiments that independently mapped out the energy dependence of the radiosensitizing effects of GNPs on plasmid DNA suspended in water. Incident photon energy was varied from 11.8 to 80 keV through the use of monochromatic synchrotron and broadband X-rays. These results depart significantly from the theoretical predictions in two ways: First, the sensitization is significantly larger than would be predicted; second, it does not vary with energy as would be predicted from energy absorption coefficients. These results clearly demonstrate that the effects of GNP-enhanced therapies cannot be predicted by considering additional dose alone and that a greater understanding of the processes involved is necessary for the development of future therapeutics.
Resumo:
Thick (4 mu m) films of anatase titania are used to photocatalyze the removal of deposited films of amorphous sulfur, similar to 2.8 mu m, thick and under moderate illumination conditions (I = 5.6 mW cm(-2)) on the open bench the process is complete within similar to 8 or 18 h using UVC or UVA light, respectively. Using UVA light, 96% of the product of the photocatalytic removal of the film of sulfur is sulfur dioxide, SO2. The photonic efficiency of this process is similar to 0.16%, which is much higher (> 15 times) than that of the removal of soot by the same films, under similar experimental conditions. In contrast to the open bench work, in a closed system the photocatalytic activity of a titania film toward the removal of sulfur decreased with repeated use, due to the accumulation of sulfuric acid on its surface generated by the subsequent photocatalytic oxidation of the initial product, SO2. The H2SO4-inactivated films are regenerated by soaking in water. The problems of using titania films to remove SO2 from a gaseous environment are discussed briefly.
Resumo:
The manner in which ultrathin films of alumina, deposited at the dielectric-electrode interface, affect the recoverable energy density associated with (BiFeO3)0.6–(SrTiO3)0.4 (BFST) thin film capacitors has been characterised. Approximately 6 nm of alumina on 400 nm of BFST increases the maximum recoverable energy of the system by around 30% from 13 Jcc1 to 17 Jcc1.
Essentially, the alumina acts in the same way as a naturally present parasitic “dead-layer,” distorting the polarisation-field response such that the ultimate polarisation associated with the BFST is pushed to higher values of electric field. The work acts as a proof-of-principle to illustrate how the design of artificial interfacial dielectric “dead-layers” can increase energy densities in simple dielectric capacitors, allowing them to compete more generally with other energy storage technologies.
Resumo:
Naturally occurring ices lie on both interstellar dust grains and on celestial objects, such as those in the outer Solar system. These ices are continuously subjected to irradiation by ions from the solar wind and/or cosmic rays, which modify their surfaces. As a result, new molecular species may form which can be sputtered off into space or planetary atmospheres. We determined the experimental values of sputtering yields for irradiation of oxygen ice at 10 K by singly (He+, C+, N+, O+ and Ar+) and doubly (C2 +, N2 + and O2 +) charged ions with 4 keV kinetic energy. In these laboratory experiments, oxygen ice was deposited and irradiated by ions in an ultra high vacuum chamber at low temperature to simulate the environment of space. The number of molecules removed by sputtering was observed by measurement of the ice thickness using laser interferometry. Preliminary mass spectra were taken of sputtered species and of molecules formed in the ice by temperature programmed desorption (TPD). We find that the experimental sputtering yields increase approximately linearly with the projectile ion mass (or momentum squared) for all ions studied. No difference was found between the sputtering yields for singly and doubly charged ions of the same atom within the experimental uncertainty, as expected for a process dominated by momentum transfer. The experimental sputter yields are in good agreement with values calculated using a theoretical model except in the case of oxygen ions. Preliminary studies have shown molecular oxygen as the dominant species sputtered and TPD measurements indicate ozone formation.
Resumo:
The dielectric properties of BaTiO3 thin films and multilayers are different from bulk materials because of nanoscale dimensions, interfaces, and stress-strain conditions. In this study, BaTiO3/SrTiO3 multilayers deposited on SrTiO3 substrates by pulsed laser deposition have been investigated by high-energy-resolution electron energy-loss spectroscopy. The fine structures in the spectra are discussed in terms of crystal-field splitting and the internal strain. The crystal-field splitting of the BaTiO3 thin layer is found to be a little larger than that of bulk BaTiO3, which has been interpreted by the presence of the internal strain induced by the misfit at the interface. This finding is consistent with the lattice parameters of the BaTiO3 thin layer determined by the selected area diffraction pattern. The near-edge structure of the oxygen K edge in BaTiO3 thin layers and in bulk BaTiO3 are simulated by first-principle self-consistent full multiple-scattering calculations. The results of the simulations are in a good agreement with the experimental results. Moreover, the aggregation of oxygen vacancies at the rough BaTiO3/SrTiO3 interface is indicated by the increased [Ti]/[O] element ratio, which dominates the difference of dielectric properties between BaTiO3 layer and bulk materials.
Resumo:
High-resolution soft x-ray photoemission spectroscopy (SXPS) has been used to study the high-temperature thermal stability of ultra-thin atomic layer deposited (ALD) Al2O3 layers (~1 nm) on sulfur passivated and native oxide covered InAs surfaces. While the arsenic oxides were removed from both interfaces following a 600 °C anneal, a residual indium oxide signal remained. No significant differences were observed between the sulfur passivated and native oxide surfaces other than the thickness of the interfacial oxide layer while the Al2O3 stoichiometry remained unaffected by the anneals. The energy band offsets were determined for the Al2O3 on the sulfur passivated InAs surface using both valence band edge and shallow core-level photoemission measurements.