41 resultados para electron paramagnetic resonance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on electron paramagnetic resonance (EPR) studies of nitrogen doped diamond that has been N-15 enriched, electron irradiated and annealed. EPR spectra from two new nitrogen containing S = 1/2 defects are detected and labelled WAR9 and WAR10. We show that the properties of these defects are consistent with them being the < 001 >-nitrogen split interstitial and the < 001 >-nitrogen split interstitial-< 001 >-carbon split interstitial pair, respectively. We also provide an explanation for why these defects have previously eluded discovery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Despite the numerous experimental and theoretical studies on the negatively charged nitrogen vacancy center (NV-) in diamond and the predictions that the neutral nitrogen vacancy center (NV0) should have an S=1/2 ground state, NV0 has not previously been detected by electron paramagnetic resonance (EPR). We report new EPR data on a trigonal nitrogen-containing defect in diamond with an S=3/2 excited state populated via optical excitation. Analysis of the spin Hamiltonian parameters and the wavelength dependence of the optical excitation leads to assignment of this S=3/2 state to the (4)A(2) excited state of NV0. This identification, together with an examination of the electronic structure of the NV centers in diamond, provides a plausible explanation for the lack of observation (to date) of an EPR signal from the NV0 ground state.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The metallo-phthalocyanines (MPcs) are an interesting group of organic semiconductor materials for applications such as large area solar cells due to their optoelectronic properties coupled with the possibility of easily and cheaply fabricating thin films of MPcs [1, 2]. As for organic semiconductors in general, many of the interesting properties of the MPcs such as magnetism, light absorption and charge transport, are highly anisotropic [2, 3]. To maximise the efficiency of a device based on these materials it is therefore important to study their molecular orientation in films and to assess the influence of different growth conditions and substrate treatments.
X-ray diffraction is a well established and powerful technique for studying texture (and hence molecular orientation) in crystalline materials, but it cannot provide any information about amorphous or nanocrystalline films. In electron paramagnetic resonance (EPR) spectroscopy the signal comes from the spin of unpaired electrons in the material. This technique therefore does not require the sample to be crystalline. It works for any sample with paramagnetic centres such as the MPcs where the unpaired electrons are contributed by the metal. In this paper we present a continuous-wave X-band EPR study using the anisotropy of the EPR spectrum of CuPc [4] to determine the orientation effects in different types of CuPc films. From these measurements we gain insight into the molecular arrangement of films with different spin concentrations, and apply our technique to the study of molecular orientation in photovoltaic cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aims/hypothesis: Patients with type 1 diabetes mellitus are more susceptible than healthy individuals to exercise-induced oxidative stress and vascular endothelial dysfunction, which has important implications for the progression of disease. Thus, in the present study, we designed a randomised double-blind, placebo-controlled trial to test the original hypothesis that oral prophylaxis with vitamin C attenuates rest and exercise-induced free radical-mediated lipid peroxidation in type 1 diabetes mellitus. Methods: All data were collected from hospitalised diabetic patients. The electron paramagnetic resonance spectroscopic detection of spin-trapped a-phenyl-tert-butylnitrone (PBN) adducts was combined with the use of supporting markers of lipid peroxidation and non-enzymatic antioxidants to assess exercise-induced oxidative stress in male patients with type 1 diabetes (HbA1c 7.9±1%, n=12) and healthy controls (HbA1c 4.6±0.5%, n=14). Following participant randomisation using numbers in a sealed envelope, venous blood samples were obtained at rest, after a maximal exercise challenge and before and 2 h after oral ingestion of 1 g ascorbate or placebo. Participants and lead investigators were blinded to the administration of either placebo or ascorbate treatments. Primary outcome was the difference in changes in free radicals following ascorbate ingestion. Resuts: Six diabetic patients and seven healthy control participants were randomised to each of the placebo and ascorbate groups. Diabetic patients (n=12) exhibited an elevated concentration of PBN adducts (p<0.05 vs healthy, n=14), which were confirmed as secondary, lipid-derived oxygen-centred alkoxyl (RO•) radicals (a nitrogen=1.37 mT and aßhydrogen=0.18 mT). Lipid hydroperoxides were also selectively elevated and associated with a depression of retinol and lycopene (p<0.05 vs healthy). Vitamin C supplementation increased plasma vitamin C concentration to a similar degree in both groups (p<0.05 vs pre-supplementation) and attenuated the exercise-induced oxidative stress response (p<0.05 vs healthy). There were no selective treatment differences between groups in the primary outcome variable. Conclusions/ interpretation: These findings are the first to suggest that oral vitamin C supplementation provides an effective prophylaxis against exercise-induced free radical-mediated lipid peroxidation in human diabetic blood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bailey DM, Taudorf S, Berg RMG, Lundby C, McEneny J, Young IS, Evans KA, James PE, Shore A, Hullin DA, McCord JM, Pedersen BK, Moller K. Increased cerebral output of free radicals during hypoxia: implications for acute mountain sickness? Am J Physiol Regul Integr Comp Physiol 297: R1283-R1292, 2009. First published September 2, 2009; doi: 10.1152/ajpregu.00366.2009.-This study examined whether hypoxia causes free radical-mediated disruption of the blood-brain barrier (BBB) and impaired cerebral oxidative metabolism and whether this has any bearing on neurological symptoms ascribed to acute mountain sickness (AMS). Ten men provided internal jugular vein and radial artery blood samples during normoxia and 9-h passive exposure to hypoxia (12.9% O-2). Cerebral blood flow was determined by the Kety-Schmidt technique with net exchange calculated by the Fick principle. AMS and headache were determined with clinically validated questionnaires. Electron paramagnetic resonance spectroscopy and ozone-based chemiluminescence were employed for direct detection of spin-trapped free radicals and nitric oxide metabolites. Neuron-specific enolase (NSE), S100 beta, and 3-nitrotyrosine (3-NT) were determined by ELISA. Hypoxia increased the arterio-jugular venous concentration difference (a-v(D)) and net cerebral output of lipid-derived alkoxyl-alkyl free radicals and lipid hydroperoxides (P

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mitochondrial free radical formation has been implicated as a potential mechanism underlying degenerative senescence, although human data are lacking. Therefore, the present study was designed to examine if resting and exercise-induced intramuscular free radical-mediated lipid peroxidation is indeed increased across the spectrum of sedentary aging. Biopsies were obtained from the vastus lateralis in six young (26 ± 6 yr) and six aged (71 ± 6 yr) sedentary males at rest and after maximal knee extensor exercise. Aged tissue exhibited greater (P < 0.05 vs. the young group) electron paramagnetic resonance signal intensity of the mitochondrial ubisemiquinone radical both at rest (+138 ± 62%) and during exercise (+143 ± 40%), and this was further complemented by a greater increase in a-phenyl-tert-butylnitrone adducts identified as a combination of lipid-derived alkoxyl-alkyl radicals (+295 ± 96% and +298 ± 120%). Lipid hydroperoxides were also elevated at rest (0.190 ± 0.169 vs. 0.148 ± 0.071 nmol/mg total protein) and during exercise (0.567 ± 0.259 vs. 0.320 ± 0.263 nmol/mg total protein) despite a more marked depletion of ascorbate and uptake of a/ß-carotene, retinol, and lycopene (P < 0.05 vs. the young group). The impact of senescence was especially apparent when oxidative stress biomarkers were expressed relative to the age-related decline in mitochondrial volume density and absolute power output at maximal exercise. In conclusion, these findings confirm that intramuscular free radical-mediated lipid peroxidation is elevated at rest and during acute exercise in aged humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT BACKGROUND: Acute exposure to high-altitude stimulates free radical formation in lowlanders yet whether this persists during chronic exposure in healthy well-adapted and maladapted highlanders suffering from chronic mountain sickness (CMS) remains to be established. METHODS: Oxidative-nitrosative stress [ascorbate radical (A•-), electron paramagnetic resonance spectroscopy and nitrite (NO2-), ozone-based chemiluminescence] was assessed in venous blood of 25 male highlanders living at 3,600 m with (n = 13, CMS+) and without (n = 12, CMS-) CMS. Twelve age and activity-matched healthy male lowlanders were examined at sea-level and during acute hypoxia. We also measured flow-mediated dilatation (FMD), arterial stiffness (AIx-75) and carotid intima-media thickness (IMT). RESULTS: Compared to normoxic lowlanders, oxidative-nitrosative stress was moderately increased in CMS- (P < 0.05) as indicated by elevated A•- (3,191 ± 457 vs. 2,640 ± 445 arbitrary units (AU)] and lower NO2- (206 ± 55 vs. 420 ± 128 nmol/L) whereas vascular function remained preserved. This was comparable to that observed during acute hypoxia in lowlanders in whom vascular dysfunction is typically observed. In contrast, this response was markedly exaggerated in CMS+ (A•-: 3,765 ± 429 AU and NO2- : 148 ± 50 nmol/L) compared to both CMS- and lowlanders (P < 0.05). This was associated with systemic vascular dysfunction as indicated by lower (P < 0.05 vs. CMS-) FMD (4.2 ± 0.7 vs. 7.6 ± 1.7 %) and increased AIx-75 (23 ± 8 vs. 12 ± 7 %) and carotid IMT (714 ± 127 vs. 588 ± 94 µM). CONCLUSIONS: Healthy highlanders display a moderate sustained elevation in oxidative-nitrosative stress that unlike the equivalent increase evoked by acute hypoxia in healthy lowlanders, failed to affect vascular function. Its more marked elevation in patients with CMS may contribute to systemic vascular dysfunction.Clinical Trials Gov Registration # NCT011827921Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, Wales, UK;2Sondes Moléculaires en Biologie et Stress Oxydant, Institut de Chimie Radicalaire, CNRS UMR 7273, Aix-Marseille University, France;3Department of Cardiology, University Hospital of Bern, Bern, Switzerland;4Institute of Clinical Physiology, CNR, Pisa, Italy;5Instituto Bolivano de Biologia de Altura, La Paz, Bolivia;6Centre for Clinical and Population Sciences, Queen's University Belfast, Belfast, Northern Ireland,7Botnar Center for Clinical Research, Hirslanden Group, Lausanne, Switzerland;8Facultad de Ciencias, Departamento de Biología, Universidad de Tarapacá, Arica, Chile and9Department of Internal Medicine, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland*Drs Bailey, Rimoldi, Scherrer and Sartori contributed equally to this workCorrespondence: Damian Miles Bailey, Neurovascular Research Laboratory, Faculty of Health, Science and Sport, University of Glamorgan, UK CF37 4AT email: dbailey1@glam.ac.uk.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C-60 and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C-60, molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C-60 solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The N-14, N-15, and C-13 hyperfine interactions in the ground state of the negatively charged nitrogen vacancy (NV-) center have been investigated using electron-paramagnetic-resonance spectroscopy. The previously published parameters for the N-14 hyperfine interaction do not produce a satisfactory fit to the experimental NV- electron-paramagnetic-resonance data. The small anisotropic component of the NV- hyperfine interaction can be explained from dipolar interaction between the nitrogen nucleus and the unpaired-electron probability density localized on the three carbon atoms neighboring the vacancy. Optical spin polarization of the NV- ground state was used to enhance the electron-paramagnetic-resonance sensitivity enabling detailed study of the hyperfine interaction with C-13 neighbors. The data confirmed the identification of three equivalent carbon nearest neighbors but indicated the next largest C-13 interaction is with six, rather than as previously assumed three, equivalent neighboring carbon atoms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nitrogen is one of the most common impurities in diamond. On a substitutional site it acts as a deep donor, approximately 1.7 eV below the conduction band. Irradiation of nitrogen containing diamond and subsequent annealing creates the nitrogen vacancy centre, which has recently attracted much attention for quantum information processing application. Another possible product of irradiation and annealing of nitrogen containing diamond is interstitial nitrogen. Presumably, a mobile carbon interstitial migrates to a substitutional nitrogen to produce an interstitial nitrogen complex which may or may not be mobile. The configuration(s) of interstitial nitrogen related defects (e.g. bond centred, [001]-split) are not known. An infra-red (IR) absorption peak at 1450 cm-1 labelled H1a has been associated with an nitrogen interstitial complex. [1] Theoretical modelling suggested that this IR local mode is due to a bond centred nitrogen interstitial [2]. However, more recent modelling [3] suggests that this defect is mobile at temperatures were H1a is stable and instead assign H1a to two nitrogen atoms occupying a single lattice site in a [001]-split configuration. To date no electron paramagnetic resonance (EPR) spectra have been conclusively associated with an interstitial nitrogen defect.

In this study we present data from new EPR and optical absorption studies in combination with uniaxial stress of nitrogen interstitial related defects in electron irradiated and annealed nitrogen doped diamond. These measurements yield symmetry information about the defects allowing us to determine which of the proposed models are possible. EPR spectra of nitrogen interstitial related defects in samples isotopically enriched with 15N are reported and we show that these explain the lack of previous EPR data for these defects. Correlations between the IR absorbance and the integrated intensity of the new EPR defects are studied for varying irradiation doses and annealing temperatures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

New Findings

What is the central question of this study?Exercise performance is limited during hypoxia by a critical reduction in cerebral and skeletal tissue oxygenation. To what extent an elevation in systemic free radical accumulation contributes to microvascular deoxygenation and the corresponding reduction in maximal aerobic capacity remains unknown.What is the main finding and its importance?We show that altered free radical metabolism is not a limiting factor for exercise performance in hypoxia, providing important insight into the fundamental mechanisms involved in the control of vascular oxygen transport.

Exercise performance in hypoxia may be limited by a critical reduction in cerebral and skeletal tissue oxygenation, although the underlying mechanisms remain unclear. We examined whether increased systemic free radical accumulation during hypoxia would be associated with elevated microvascular deoxygenation and reduced maximal aerobic capacity (). Eleven healthy men were randomly assigned single-blind to an incremental semi-recumbent cycling test to determine  in both normoxia (21% O2) and hypoxia (12% O2) separated by a week. Continuous-wave near-infrared spectroscopy was employed to monitor concentration changes in oxy- and deoxyhaemoglobin in the left vastus lateralis muscle and frontal cerebral cortex. Antecubital venous blood samples were obtained at rest and at  to determine oxidative (ascorbate radical by electron paramagnetic resonance spectroscopy), nitrosative (nitric oxide metabolites by ozone-based chemiluminescence and 3-nitrotyrosine by enzyme-linked immunosorbent assay) and inflammatory stress biomarkers (soluble intercellular/vascular cell adhesion 1 molecules by enzyme-linked immunosorbent assay). Hypoxia was associated with increased cerebral and muscle tissue deoxygenation and lower  (P < 0.05 versus normoxia). Despite an exercise-induced increase in oxidative–nitrosative–inflammatory stress, hypoxia per se did not have an additive effect (P > 0.05 versus normoxia). Consequently, we failed to observe correlations between any metabolic, haemodynamic and cardiorespiratory parameters (P > 0.05). Collectively, these findings suggest that altered free radical metabolism cannot explain the elevated microvascular deoxygenation and corresponding lower  in hypoxia. Further research is required to determine whether free radicals when present in excess do indeed contribute to the premature termination of exercise in hypoxia.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aim: The aim of this study was to examine if erythropoietin (EPO) has the potential to act as a biological antioxidant and determine the underlying mechanisms.

Methods: The rate at which its recombinant form (rHuEPO) reacts with hydroxyl (HO center dot), 2,2-diphenyl-1-picrylhydrazyl (DPPH center dot) and peroxyl (ROO center dot) radicals was evaluated in-vitro. The relationship between the erythopoietic and oxidative-nitrosative stress response to poikilocapneic hypoxia was determined separately in-vivo by sampling arterial blood from eleven males in normoxia and following 12 h exposure to 13% oxygen. Electron paramagnetic resonance spectroscopy, ELISA and ozone-based chemiluminescence were employed for direct detection of ascorbate (A(center dot-)) and N-tert-butyl-a-phenylnitrone spin-trapped alkoxyl (PBN-OR) radicals, 3-nitrotyrosine (3-NT) and nitrite (NO2-).

Results: We found rHuEPO to be a potent scavenger of HO center dot (k(r) = 1.03-1.66 x 10(11) M-1 s(-1)) with the capacity to inhibit Fenton chemistry through catalytic iron chelation. Its ability to scavenge DPPH. and ROO center dot was also superior compared to other more conventional antioxidants. Hypoxia was associated with a rise in arterial EPO and free radical-mediated reduction in nitric oxide, indicative of oxidative-nitrosative stress. The latter was confirmed by an increased systemic formation of A(center dot-), PBN-OR, 3-NT and corresponding loss of NO2- (P <0.05 vs. normoxia). The erythropoietic and oxidative-nitrosative stress responses were consistently related (r =-0.52 to 0.68, P <0.05).

Conclusion: These findings demonstrate that EPO has the capacity to act as a biological antioxidant and provide a mechanistic basis for its reported cytoprotective benefits within the clinical setting.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Reported herein are measured absolute single, double, and triple charge exchange (CE) cross sections for the highly charged ions (HCIs) Cq+ (q=5,6), Oq+ (q=6,7,8), and Neq+ (q=7,8) colliding with the molecular species H2O, CO, and CO2. Present data can be applied to interpreting observations of x-ray emissions from comets as they interact with the solar wind. As such, the ion impact energies of 7.0q keV (1.62–3.06 keV/amu) are representative of the fast solar wind, and data at 1.5q keV for O6+ (0.56 keV/amu) on CO and CO2 and 3.5q keV for O5+ (1.09 keV/amu) on CO provide checks of the energy dependence of the cross sections at intermediate and typical slow solar wind velocities. The HCIs are generated within a 14 GHz electron cyclotron resonance ion source. Absolute CE measurements are made using a retarding potential energy analyzer, with measurement of the target gas cell pressure and incident and final ion currents. Trends in the cross sections are discussed in light of the classical overbarrier model (OBM), extended OBM, and with recent results of the classical trajectory Monte Carlo theory.