89 resultados para donor acceptor pair
Resumo:
Allosteric agonists are powerful tools for exploring the pharmacology of closely related G protein-coupled receptors that have nonselective endogenous ligands, such as the short chain fatty acids at free fatty acid receptors 2 and 3 (FFA2/GPR43 and FFA3/GPR41, respectively). We explored the molecular mechanisms mediating the activity of 4-chloro-alpha-(1-methylethyl)-N-2-thiazolylbenzeneacetamide (4-CMTB), a recently described phenylacetamide allosteric agonist and allosteric modulator of endogenous ligand function at human FFA2, by combining our previous knowledge of the orthosteric binding site with targeted examination of 4-CMTB structure-activity relationships and mutagenesis and chimeric receptor generation. Here we show that 4-CMTB is a selective agonist for FFA2 that binds to a site distinct from the orthosteric site of the receptor. Ligand structure-activity relationship studies indicated that the N-thiazolyl amide is likely to provide hydrogen bond donor/acceptor interactions with the receptor. Substitution at Leu(173) or the exchange of the entire extracellular loop 2 of FFA2 with that of FFA3 was sufficient to reduce or ablate, respectively, allosteric communication between the endogenous and allosteric agonists. Thus, we conclude that extracellular loop 2 of human FFA2 is required for transduction of cooperative signaling between the orthosteric and an as-yet-undefined allosteric binding site of the FFA2 receptor that is occupied by 4-CMTB.
Resumo:
Artificial riboflavin receptors adapted to aqueous environments were studied for their ability to selectively extract riboflavine (Rf) from three types of beverages i.e. milk, beer and a multivitamin mixture. The basic receptor was first prepared by molecular imprinting in nonaqueous medium using a hydrogen-bond donor-acceptor-donor functional monomer (2,6-bis(acrylamido)pyridine), complementary to the imide motif of the template, riboflavin tetra-acetate as template and pentaerythritol triacrylate (PETA) as a hydrophilic cross-linking monomer. The polymer was then packed in columns and used for extraction of riboflavine from beverages. Riboflavine (Rf) was selectively removed from milk and an artificial vitamin mixture but the nonspecific binding was still significant, as judged from the binding of Rf to a control nonimprinted polymer. In order to suppress this nonspecific binding, attempts to hydrolytically hydrophilize the polymer matrix were performed. The preferred approach consisted in a controlled base hydrolysis of pendent unreacted acrylate groups, using hydroxides with differently sized counterions as reagents. This resulted in a decreased binding of Rf to both polymers, but to an equal extent implying a preferential suppression of the nonspecific contribution to the binding. The hydrophilized polymers, when subjected to beer, showed larger imprinting factors at lower phase ratios compared to the nontreated polymers and a maximum removal of 86% compared to 47% for the nonimprinted control polymer.
Resumo:
Nanostructure and molecular orientation play a crucial role in determining the functionality of organic thin films. In practical devices, such as organic solar cells consisting of donor-acceptor mixtures, crystallinity is poor and these qualities cannot be readily determined by conventional diffraction techniques, while common microscopy only reveals surface morphology. Using a simple nondestructive technique, namely, continuous-wave electron paramagnetic resonance spectroscopy, which exploits the well-understood angular dependence of the g-factor and hyperfine tensors, we show that in the solar cell blend of C-60 and copper phthalocyanine (CuPc)-for which X-ray diffraction gives no information-the CuPc, and by implication the C-60, molecules form nanoclusters, with the planes of the CuPc molecules oriented perpendicular to the film surface. This information demonstrates that the current nanostructure in CuPc:C-60 solar cells is far from optimal and suggests that their efficiency could be considerably increased by alternative film growth algorithms.
Resumo:
Although allogeneic bone marrow transplantation has been shown to be a highly effective treatment for acute and chronic leukemia, leukemic relapse remains a significant problem. Leukemic relapse occurs in recipient cells in the majority of cases, but the paucity of donor cell leukemias may reflect the sensitivity of the investigative technique. We have developed a highly sensitive technique to identify the origin of all hematopoietic cells in the post transplant state which is based on PCR amplification of microsatellites, polymorphic tandem repetitive elements. We have identified donor leukemia (AML M5) following a sex matched BMT for severe aplastic anemia, verified a previously reported case of donor leukemia following BMT for chronic granulocytic leukemia and recently identified an acquired cytogenetic abnormality(del 11q23) in donor cells four years following an apparently successful BMT for AML. In all cases the donors have remained healthy. Postulated mechanisms include transfer to the transplanted marrow of a dormant oncogene residing in the DNA of either a virus, the chromosomes of degenerating irradiation damaged host leukemic cells or in the marrow stroma which is radioresistant and host in origin following BMT. Using sensitive techniques donor leukemia has been shown to be a more common event than was previously thought and an understanding of its pathogenesis may allow us to elucidate leukemogenic mechanisms in man.
Resumo:
This article describes the development of the first ion pair solid phase extraction technique (IPSPE), which has been applied to the extraction of metformin from plasma samples. In addition an ion pair chromatographic method was developed for the specific HPLC determination of metformin. Several extraction and HPLC methods have been described previously for metformin, however, most of them did not solve the problems associated with the high polarity of this drug. Drug recovery in the developed method was found to be more than 98%. The limit of detection and limit of quantification was 3 and 5 ng/ml, respectively. The intraday and interday precision (measured by coefficient of variation, CV%) was always less than 9%. The accuracy (measured by relative error, R.E.%) was always less than 6.9%. Stability analysis showed that metformin is stable for at least 3 months when stored at -70degreesC. The method has been applied to 150 patient samples as part of a medication adherence study. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
In 'Charge transfer from the negative-energy continuum: alternative mechanism for pair production in relativistic atomic collisions', Eichler (1995 Phys. Rev. Lett. 75 3653) proposes an alternative mechanism for capture by pair production, and from it derives an analytic expression for the total cross section with a surprisingly strong energy dependence. We show that, in fact, there is no alternative mechanism; rather the above mechanism may be more transparently viewed as an ionization-like transition in one centre with inclusion of continuum distortion by the second centre. We further show that to Centre the initial and final states on the target and projectile leads to confusion in the momentum transfer vectors, and hence, respectively that the alleged high-energy behaviour is erroneous.
Resumo:
Results are presented for simulations of electron-positron pair production in relativistic heavy-ion collisions leading to electron capture and positron ejection. We apply a two-center relativistic continuum distorted-wave model to represent the electron or positron dynamics during the collision process. The results are compared with experimental cross-section data for La57+ and Au79+ impact on gold, silver, and copper targets. The theory is in good agreement with experiment for La57+ impact, verifying the result that the process increases in importance with both collision energy and target atomic number, and improves upon previous simulations of this process.
Resumo:
A novel anthracene-tagged oligonucleotide can discriminate between a fully-matched DNA target sequence and one with a single mismatching base-pair through a remarkable difference in fluorescence emission intensity upon duplex formation.
Resumo:
The nonlinear coupling between finite amplitude ion thermal waves (ITWs) and quasistationary density perturbations in a pair-ion plasma is considered. A generalized nonlinear Schrödinger equation is derived for the ITW electric field envelope, accounting for large amplitude quasistationary plasma slow motion describing the ITW ponderomotive force. The present theory accounts for the trapping of ITWs in a large amplitude ion density hole. The small amplitude limit is considered and exact analytical solutions are obtained. Finite amplitude solutions are obtained numerically and their characteristics are discussed.