3 resultados para distributions to shareholders


Relevância:

80.00% 80.00%

Publicador:

Resumo:

We report the discovery, tracking, and detection circumstances for 85 trans-Neptunian objects (TNOs) from the first 42 deg2 of the Outer Solar System Origins Survey. This ongoing r-band solar system survey uses the 0.9 deg2 field of view MegaPrime camera on the 3.6 m Canada–France–Hawaii Telescope. Our orbital elements for these TNOs are precise to a fractional semimajor axis uncertainty <0.1%. We achieve this precision in just two oppositions, as compared to the normal three to five oppositions, via a dense observing cadence and innovative astrometric technique. These discoveries are free of ephemeris bias, a first for large trans-Neptunian surveys. We also provide the necessary information to enable models of TNO orbital distributions to be tested against our TNO sample. We confirm the existence of a cold "kernel" of objects within the main cold classical Kuiper Belt and infer the existence of an extension of the "stirred" cold classical Kuiper Belt to at least several au beyond the 2:1 mean motion resonance with Neptune. We find that the population model of Petit et al. remains a plausible representation of the Kuiper Belt. The full survey, to be completed in 2017, will provide an exquisitely characterized sample of important resonant TNO populations, ideal for testing models of giant planet migration during the early history of the solar system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: Radiotherapy is planned to achieve the optimal physical dose distribution to the target tumour volume whilst minimising dose to the surrounding normal tissue. Recent in vitro experimental evidence has demonstrated an important role for intercellular communication in radiobiological responses following non-uniform exposures. This study aimed to model the impact of these effects in the context of techniques involving highly modulated radiation fields or spatially fractionated treatments such as GRID therapy.

METHODS: Using the small animal radiotherapy research platform (SARRP) as a key enabling technology to deliver precision imaged-guided radiotherapy, it is possible to achieve spatially modulated dose distributions that model typical clinical scenarios. In this work, we planned uniform and spatially fractionated dose distributions using multiple isocentres with beam sizes of 0.5 - 5 mm to obtain 50% volume coverage in a subcutaneous murine tumour model, and applied a model of cellular response that incorporates intercellular communication to assess the potential impact of signalling effects with different ranges.

RESULTS: Models of GRID treatment plans which incorporate intercellular signalling showed increased cell killing within the low dose region. This results in an increase in the Equivalent Uniform Dose (EUD) for GRID exposures compared to standard models, with some GRID exposures being predicted to be more effective than uniform delivery of the same physical dose.

CONCLUSIONS: This study demonstrates the potential impact of radiation induced signalling on tumour cell response for spatially fractionated therapies and identifies key experiments to validate this model and quantify these effects in vivo.

ADVANCES IN KNOWLEDGE: This study highlights the unique opportunities now possible using advanced preclinical techniques to develop a foundation for biophysical optimisation in radiotherapy treatment planning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have observed a quiet Sun region with the Swedish 1-meter Solar Telescope (SST) equipped with CRISP Imaging SpectroPolarimeter. High-resolution, high-cadence, H-alpha line scanning images were taken to observe different layers of the solar atmosphere from the photosphere to upper chromosphere. We study the distribution of power in different period-bands at different heights. Power maps of the upper photosphere and the lower chromosphere show suppressed power surrounding the magnetic-network elements, known as "magnetic shadows". These also show enhanced power close to the photosphere, traditionally referred to as"power halos". The interaction between acoustic waves and inclined magnetic fields is generally believed to be responsible for these two effects. In this study we explore if small-scale transients can influence the distribution of power at different heights. We show that the presence of transients, like mottles, Rapid Blueshifted Excursions (RBEs) and Rapid Redshifted Excursions (RREs), can strongly influence the power-maps. The short and finite lifetime of these events strongly affects all powermaps, potentially influencing the observed power distribution. We show that Doppler-shifted transients like RBEs and RREs that occur ubiquitously, can have a dominant effect on the formation ofthe power halos in the quiet Sun. For magnetic shadows, transients like mottles do not seem to have a significant effect in the power suppression around 3 minutes and wave interaction may play a key role here. Our high cadence observations reveal that flows, waves and shocks manifest in presence of magnetic fields to form a non-linear magnetohydrodynamic system.