2 resultados para distance estimation
Resumo:
Nova V458 Vul erupted on 2007 August 8 and reached a visual magnitude of 8.1 a few days later. Ha images obtained 6 weeks before the outburst as part of the IPHAS Galactic plane survey reveal an 18th magnitude progenitor surrounded by an extended nebula. Subsequent images and spectroscopy of the nebula reveal an inner nebular knot increasing rapidly in brightness due to flash ionization by the nova event. We derive a distance of 13 kpc based on light travel time considerations, which is supported by two other distance estimation methods. The nebula has an ionized mass of 0.2 Msolar and a low expansion velocity: this rules it out as ejecta from a previous nova eruption, and is consistent with it being a ~14,000 year old planetary nebula, probably the product of a prior common envelope (CE) phase of evolution of the binary system. The large derived distance means that the mass of the erupting WD component of the binary is high. We identify two possible evolutionary scenarios, in at least one of which the system is massive enough to produce a Type Ia supernova upon merging.
Resumo:
We present optical (UBVRI) and near-IR (YJHK) photometry of the normal Type Ia supernova (SN) 2004S. We also present eight optical spectra and one near-IR spectrum of SN 2004S. The light curves and spectra are nearly identical to those of SN 2001el. This is the first time we have seen optical and IR light curves of two Type Ia SNe match so closely. Within the one parameter family of light curves for normal Type Ia SNe, that two objects should have such similar light curves implies that they had identical intrinsic colors and produced similar amounts of Ni-56. From the similarities of the light-curve shapes we obtain a set of extinctions as a function of wavelength that allows a simultaneous solution for the distance modulus difference of the two objects, the difference of the host galaxy extinctions, and RV. Since SN 2001el had roughly an order of magnitude more host galaxy extinction than SN 2004S, the value of R-V = 2.15(-0.22)(+0.24) pertains primarily to dust in the host galaxy of SN 2001el. We have also shown via Monte Carlo simulations that adding rest-frame J-band photometry to the complement of BVRI photometry of Type Ia SNe decreases the uncertainty in the distance modulus by a factor of 2.7. A combination of rest-frame optical and near-IR photometry clearly gives more accurate distances than using rest-frame optical photometry alone.