87 resultados para dispersion polymerization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A battery of allelic markers at highly polymorphic microsatellite loci was developed and employed to confirm genetically the clonal nature of sibships in nine-banded armadillos. This phenomenon of consistent polyembryony, otherwise nearly unknown among the vertebrates, then was capitalized upon to describe the micro-spatial distributions of numerous clonal sibships in a natural population of armadillos. Adult clonemates were significantly more dispersed than were juvenile sibs, suggesting limited opportunities for altruistic behavioral interactions among mature individuals. These results, and considerations of armadillo natural history, suggest that evolutionary explanations for polyembryony in this species may not reside in the kinds of ecological and kin selection theories relevant to some of the polyembryonic invertebrates. Rather, polyembryony in armadillos may be associated evolutionarily with other reproductive peculiarities of the species, including delayed uterine implantation of a single egg.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The equilibrium polymerization of sulfur is investigated by Monte Carlo simulations. The potential energy model is based on density functional results for the cohesive energy, structural, and vibrational properties as well as reactivity of sulfur rings and chains [Part I, J. Chem. Phys. 118, 9257 (2003)]. Liquid samples of 2048 atoms are simulated at temperatures 450less than or equal toTless than or equal to850 K and P=0 starting from monodisperse S-8 molecular compositions. Thermally activated bond breaking processes lead to an equilibrium population of unsaturated atoms that can change the local pattern of covalent bonds and allow the system to approach equilibrium. The concentration of unsaturated atoms and the kinetics of bond interchanges is determined by the energy DeltaE(b) required to break a covalent bond. Equilibrium with respect to the bond distribution is achieved for 15less than or equal toDeltaE(b)less than or equal to21 kcal/mol over a wide temperature range (Tgreater than or equal to450 K), within which polymerization occurs readily, with entropy from the bond distribution overcompensating the increase in enthalpy. There is a maximum in the polymerized fraction at temperature T-max that depends on DeltaE(b). This fraction decreases at higher temperature because broken bonds and short chains proliferate and, for Tless than or equal toT(max), because entropy is less important than enthalpy. The molecular size distribution is described well by a Zimm-Schulz function, plus an isolated peak for S-8. Large molecules are almost exclusively open chains. Rings tend to have fewer than 24 atoms, and only S-8 is present in significant concentrations at all T. The T dependence of the density and the dependence of polymerization fraction and degree on DeltaE(b) give estimates of the polymerization temperature T-f=450+/-20 K. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring-opening polymerization of cyclic polycarbonate oligomers, where monofunctional active sites act on difunctional monomers to produce an equilibrium distribution of rings and chains, leads to a "living polymer." Monte Carlo simulations [two-dimensional (2D) and three-dimensional (3D)] of the effects of single [J. Chem. Phys. 115, 3895 (2001)] and multiple active sites [J. Chem. Phys. 116, 7724 (2002)] are extended here to trifunctional active sites that lead to branching. Low concentrations of trifunctional particles c(3) reduce the degree of polymerization significantly in 2D, and higher concentrations (up to 32%) lead to further large changes in the phase diagram. Gel formation is observed at high total density and sizable c(3) as a continuous transition similar to percolation. Polymer and gel are much more stable in 3D than in 2D, and both the total density and the value of c(3) required to produce high molecular weight aggregates are reduced significantly. The degree of polymerization in high-density 3D systems is increased by the addition of trifunctional monomers and reduced slightly at low densities and low c(3). The presence of branching makes equilibrium states more sensitive (in 2D and 3D) to changes in temperature T. The stabilities of polymer and gel are enhanced by increasing T, and-for sufficiently high values of c(3)-there is a reversible polymer-gel transformation at a density-dependent floor temperature. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density functional calculations of the structure, potential energy surface and reactivity for organic systems closely related to bisphenol-A-polycarbonate (BPA-PC) provide the basis for a model describing the ring-opening polymerization of its cyclic oligomers by nucleophilic molecules. Monte Carlo simulations using this model show a strong tendency to polymerize that is increased by increasing density and temperature, and is greater in 3D than in 2D. Entropy in the distribution of inter-particle bonds is the driving force for chain formation. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ring opening polymerization of bisphenol A polycarbonate is studied by Monte Carlo simulations of a model comprising a fixed number of Lennard-Jones particles and harmonic bonds [J. Chem. Phys. 115, 3895 (2001)]. Bond interchanges produced by a low concentration (0.10%less than or equal toc(a)less than or equal to0.36%) of chemically active particles lead to equilibrium polymerization. There is a continuous transition in both 2D and 3D from unpolymerized cyclic oligomers at low density to a system of linear chains at high density, and the polymeric phase is much more stable in three dimensions than in two. The steepness of the polymerization transition increases rapidly as c(a) decreases, suggesting that it is discontinuous in the limit c(a)-->0. The transition is entropy driven, since the average potential energy increases systematically upon polymerization, and there is a steady decline in the degree of polymerization as the temperature is lowered. The mass distribution functions for open chains and for rings are unimodal, with exponentially decaying tails that can be fitted by Zimm-Schulz functions and simpler exponential forms. (C) 2002 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A model of the polymerization of ring oligomers of bisphenol A polycarbonate (BPA-PC) is used to investigate the influence of dimensionality (2D or 3D), density and temperature on the size distribution of the polymer chains. The polymerization step is catalyzed by a single active particle, conserves the number and type of the chemical bonds, and occurs without a significant gain in either potential energy or configurational entropy. Monte Carlo and molecular dynamics simulations show that polymerization of cyclic oligomers occurs readily at high density and is driven by the entropy associated with the distribution of interparticle bonds. Polymerization competes at lower densities with long range diffusion, which favors small molecular species, and is prevented if the system is sufficiently dilute. Polymerization occurs in 2D via a weakly first order transition as a function of density and is characterized by low hysteresis and large fluctuations in the size of polymer chains. Polymerization occurs more readily in 3D than in 2D, and is favored by increasing temperature, as expected for an entropy-driven process. (C) 2001 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free-radical polymerization of methyl methacrylate and styrene using conventional organic initiators in the room temperature ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([ C(4)mim][PF6]) is rapid and produces polymers with molecular weights up to 10x higher than from benzene; both polymerization and isolation of products were achieved without using VOCs, offering economic as well as environmental advantages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A flexible, mass-conservative numerical technique for solving the advection-dispersion equation for miscible contaminant transport is presented. The method combines features of puff transport models from air pollution studies with features from the random walk particle method used in water resources studies, providing a deterministic time-marching algorithm which is independent of the grid Peclet number and scales from one to higher dimensions simply. The concentration field is discretised into a number of particles, each of which is treated as a point release which advects and disperses over the time interval. The dispersed puff is itself discretised into a spatial distribution of particles whose masses can be pre-calculated. Concentration within the simulation domain is then calculated from the mass distribution as an average over some small volume. Comparison with analytical solutions for a one-dimensional fixed-duration concentration pulse and for two-dimensional transport in an axisymmetric flow field indicate that the algorithm performs well. For a given level of accuracy the new method has lower computation times than the random walk particle method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A comparative study of models used to predict contaminant dispersion in a partially stratified room is presented. The experiments were carried out in a ventilated test room, with an initially evenly dispersed pollutant. Air was extracted from the outlet in the ceiling of the room at 1 and 3 air changes per hour. A small temperature difference between the top and bottom of the room causes very low air velocities, and higher concentrations, in the lower half of the room. Grid-independent CFD calculations were compared with predictions from a zonal model and from CFD using a very coarse grid. All the calculations show broadly similar contaminant concentration decay rates for the three locations monitored in the experiments, with the zonal model performing surprisingly well. For the lower air change rate, the models predict a less well mixed contaminant distribution than the experimental measurements suggest. With run times of less than a few minutes, the zonal model is around two orders of magnitude faster than coarse-grid CFD and could therefore be used more easily in parametric studies and sensitivity analyses. For a more detailed picture of internal dispersion, a CFD study using coarse and standard grids may be more appropriate.