140 resultados para disordered proteins
Resumo:
In line with recent incapacitative efforts aimed at dealing with dangerous people in the community, the Government has proposed a new indeterminate sentence to deal with the current gap in the law which exists in relation to dangerous individuals with untreatable severe personality disorders. However, these new measures have serious civil liberty implications and are largely unworkable in practice. It is suggested that rather than introducing these new powers it would be better to consider amending deficiencies which exist in the criminal justice and mental health systems in respect of the management of violent and sexual offenders.
Resumo:
Using a novel non-linear optical technique enantiomeric excess within a translationally disordered overlayer on a metal surface has been monitored for the first time.
Resumo:
The quantitative assessment of apoptotic index (AI) and mitotic index (MI) and the immunoreactivity of p53, bcl-2, p21, and mdm2 were examined in tumour and adjacent normal tissue samples from 30 patients with colonic and 22 with rectal adenocarcinoma. Individual features and combined profiles were correlated with clinicopathological parameters and patient survival data to assess their prognostic value. Increased AI was significantly associated with increased bcl-2 expression (p
Resumo:
It is shown how the Debye rotational diffusion model of dielectric relaxation of polar molecules (which may be described in microscopic fashion as the diffusion limit of a discrete time random walk on the surface of the unit sphere) may be extended to yield the empirical Havriliak-Negami (HN) equation of anomalous dielectric relaxation from a microscopic model based on a kinetic equation just as in the Debye model. This kinetic equation is obtained by means of a generalization of the noninertial Fokker-Planck equation of conventional Brownian motion (generally known as the Smoluchowski equation) to fractional kinetics governed by the HN relaxation mechanism. For the simple case of noninteracting dipoles it may be solved by Fourier transform techniques to yield the Green function and the complex dielectric susceptibility corresponding to the HN anomalous relaxation mechanism.
Resumo:
The self-consistent electron potential in a current-carrying disordered quantum wire is spatially inhomogeneous due to the formation of resistivity dipoles across scattering centres. In this paper it is argued that these inhomogeneities in the potential result in a suppression of the differential conductance of such a wire at finite applied voltage. A semi-classical argument allows this suppression, quadratic in the voltage, to be related directly to the amount of intrinsic defect scattering in the wire. This result is then tested against numerical calculations.