5 resultados para dioxygen
Resumo:
Microelectrode voltammetry is used to study the electrochemical reduction of dioxygen, O-2, in the room-temperature ionic liquid trihexyl(tetradecyl)phosphonium trifluorotris(pentafluoroethyl)phosphate [P6,6,6,14][FAP]. The nature of the unusual voltammetric waves is quantitatively modeled via digital simulation with the aim of clarifying apparent inconsistencies in the literature. The reduction is shown to proceed via a two-electron reaction and involve the likely capture of a proton from the solvent system. The oxidative voltammetric signals seen at fast scan rates are interpreted as resulting from the reoxidation of HO2 center dot. In the presence of large amounts of dissolved carbon dioxide the reductive currents decrease by a factor of ca. two, consistent with the trapping of the superoxide radical, O-2(center dot), intermediate in the two-electron reduction process.
Resumo:
The three-component naphthalene dioxygenase (NDO) enzyme system carries out the first step in the aerobic degradation of naphthalene to (+)-cis-(1R,2S)-dihydroxy-1,2-dihydronaphthalene by Rhodococcus sp. strain NCIMB 12038. The terminal oxygenase component (naphthalene 1,2-dioxygenase) that catalyzes this reaction belongs to the aromatic ring hydroxylating dioxygenase family and has been crystallized. These enzymes utilize a mononuclear nonheme iron centre to catalyze the addition of dioxygen to their respective substrates. In this reaction, two electrons, two protons and a dioxygen molecule are consumed. The Rhodococcus enzyme has only 33 and 29% sequence identity to the corresponding alpha- and beta-subunits of the NDO system of Pseudomonas putida NCIMB 9816-4, for which the tertiary structure has been reported. In order to determine the three-dimensional structure of the Rhodococcus NDO, diffraction-quality crystals have been prepared by the hanging-drop method. The crystals belongs to space group P2(1)2(1)2(1), with unit-cell parameters a = 87.5, b = 144, c = 185.6 Angstrom, alpha = beta = gamma = 90degrees, and diffract to 2.3 Angstrom resolution.
Resumo:
CO and C3H6 oxidation have been carried out in the absence and presence of water over a Pd/Al2O3catalyst. It is clear that water promotes CO and, as a consequence, C3H6oxidation takes place at muchlower temperatures compared with the dry feed. The significant increase in the catalyst’s activity withrespect to CO oxidation is not simply associated with changes in surface concentration as a result ofcompetitive adsorption effects. Utilising18O2as the reactant allows the pathways whereby the oxidationdue to gaseous dioxygen and where the water activates the CO and C3H6to be distinguished. In thepresence of water, the predominant pathway is via water activation with C16O2and C16O18O being themajor species formed and oxidation with dioxygen plays a secondary role. The importance of wateractivation is further supported by the significant decrease in its effect when using D2O versus H2O.
Resumo:
High catalytic activity and selectivity has been demonstrated for the oxidation of both aliphatic and aromatic amines to nitriles under benign conditions with dioxygen or air using the Ru2Cl4(az-tpy)(2) complex. The conversion was found to be strongly influenced by the alkyl chain length of the reactant with shorter chain amines found to have lower conversions than those with longer chains. Importantly, by using the ruthenium terpyridine complex functionalized with azulenyl moiety at the 4 position of central pyridine core provided a much higher reactivity catalyst compared with a series of ruthenium terpyridine-based ligand complexes reported. Mechanistic studies using deuterated benzylamine demonstrated the importance of RuOH in this reaction.
Resumo:
Performance data for a dye based, regenerable oxygen sensor (Mills and Lawrie [1], Mills et al. [2]) are analyzed to develop useful kinetic models for sensor photoactivation (dye reduction) and dark, oxygen detection (dye oxidation). The titania loaded, thin film sensor exhibits an apparent first order photoactivation of the dye, which we demonstrate (Section 3.2 and Fig. 4) is due to a kinetic disguise of a zero order photoreaction occurring through a non-uniformly illuminated sensor film. The observed zero order, slow recovery due to dye oxidation by dioxygen (O2 detection) appears best rationalized by a model assuming a near O2-impermeable skin developing on the sensor surface as solvent is evaporatively removed following sensor film casting and curing.