75 resultados para dimethyl disulfide
Resumo:
Colourless crystals of [Hg-2(Mmt)(Dmt)(2)](NO3)(H2O) were obtained from a reaction of mercuric nitrate with nionomethyl- and dimethyl-1,2.4-triazolate (Mmt(-) and Dmt(-), respectively). In the crystal structure (monoclinic, C2/c (no. 15), a = 2579.4(4) b = 1231.1(2), c = 1634.8(2) pm, beta = 128.32(1)degrees V = 4073.3(11).10(6).pm(3): Z = 8, R-1 [I-0 > 2 sigma(I-0)]: 0.0355), half of the mercuric ions are essentially two-coordinate (Hg-N: 210-215 pm), the other half are tetrahedrally surrounded by N-donor atoms (Hg-N: 221, 225 pm) of the Mmt(-) and Dmt(-) anions. These three-N ligands construct a three-dimensional framework.
Resumo:
Colourless single crystals of [Ag-3(Dat)(2)](NO3)(3) were obtained from a reaction of silver(l) nitrate and 3,5-dimethyl-4-amino-1,2,4-triazole (Dat). In the crystal structure (orthorhombic, Fdd2, Z = 8, a = 1100.1(2), b = 3500.3(2), c = 1015.4(3) pm, R, = 0.0434) there are two crystallographically non-equivalent silver sites in a one (Ag1) to two ratio (Ag2). Both resemble linear N-Ag-N coordination although angles are 163 degrees and 144 degrees, respectively Each Dat ligand coordinates with the two ring nitrogen atoms at 216 to 219 pm and with one amino-nitrogen atom at 229 pro. According to the composition [Ag-3(Dat)(2)](3+) = [(Dat)Ag-3/2](3+), a polymeric structure is built with all Ag+ ions bridging.
Resumo:
Colourless single crystals of [Hg(CF3)(2)(Pur)](4) and [Hg(CF3)(2)(Dat)](2) were obtained from aqueous and etheric solutions of the respective components Purine, (imidazo[4,5-d]pyrimidine, Pur), 3,5-dimethyl-4 '-amino-triazole (Dat) and bis(trifluoromethyl)mercury(II), Hg(CF3)(2). [Hg(CF3)(2)(Pur)](4) crystallizes with the tetragonal system (P-4, Z = 8, a = 1486.8(2), c = 1026.2(l) pm, R-all = 0.0657) with tetrameric molecules consisting of four purine molecules bridged by slightly bent Hg(CF3)2 molecules forming a cage with the CF3 ligands surrounding this cage. The two modifications of [Hg(Dat)(CF3)2]2 (1: 170 K, triclinic, P-1, Z = 2, a 814.9(2), b = 845.4(2), c = 968.4(3) pm, alpha = 106.55(2)degrees, beta= 103.41(2)degrees, gamma = 110.79(2)degrees, R-all = 0.1189; II: monoclinic, P2(1)/c, Z = 8, a = 879.8(2), b = 1731.0(3), c = 1593.9(3) pm, beta = 106.89(2)degrees, R-all = 0.1199) both contain dimeric molecules that are stacked parallel to one crystal axis to strands which are arranged in a parallel fashion in I and rotated against each other in 11 by 110 degrees. In both, the tetrameric [Hg(CF3)(2)(Pur)](4) and the dimeric [Hg(CF3)(2)(Dat)](2) the Hg(CF3)(2) molecules are slightly bent (around 167 and 170 degrees) and rather weakly attached to the N-donor ligands Pur and Dat with Hg-N distances around 272 pm, although in both cases the Hg atoms bridge between two ligand molecules.
Resumo:
The syntheses of 2,2'-bipyridin-5-ylmethyl-5-(1,2-dithiolan-3-yl)pentanoate (L1) and N-(2,2'-bipyridin-5-ylmethyl)-5-(1,2-dithiolan-3-yl)pentanamide (L2) and their neutral fac carbonylrhenium(I) complexes [Re(L1)(CO)(3)Br] and [Re(L2)(CO)(3)Br] are reported. The. electronic absorption and emission spectra of the complexes are similar to the spectrum of the reference compound [Re(bipy)(CO)(3)Br] and correlate well with the density functional theory calculations undertaken. The surface-enhanced Raman spectroscopy (SERS) spectra (excited at both 532 and 785 nm) of the ligands and complexes were examined and compared to the spectrum of ethyl 5-(1,2-dithiolan-3-yl)pentanoate (L3), revealing that there is very little contribution to the spectra of these species from the dithiolated alkyl chains. The spectra are dominated by the characteristic peaks of a metalated 2,2'-bipyridyl group,arising from the silver colloid/ion complexation, and the rhenium center. The rhenium complexes show weak SERS bands related to the CO stretches and a broad band at 510 cm(-1) assigned to Re-CO stretching. Concentration dependent studies, measured by the relative intensity of several assigned peaks, indicate that, as the surface coverage increases, the bipyridine moiety lifts off the surface In the case of L1 and L2, this gives rise to complexes with silver at low concentration, enhancing the signals observed, while for the tricarbonylbromorhenium complexes of these ligands, the presence of the disulfide tether allows an enhancement in the limits of detection of these surface-borne species of 20 times in the case of [ReL2(CO)(3)Br] over [Re(bipy)(CO)(3)Br].
Resumo:
[Pt(Me(2)bipy)Cl-2](Me(2)bipy = 4,4'-dimethyl-2,2'-bipyridine) and HC=CC6H4-4-R react in the presence of diisopropylamine and CuI as catalyst to give the platinum bis-acetylides [Pt(Me(2)bipy)(C=CC6H4-4-R)(2)] R = H, Me, NO2. Initial spectroscopic, electrochemical and reactivity studies are presented. (C) 1997 Elsevier Science S.A.
Resumo:
Selected Bronsted acidic ionic liquids were tested as homogeneous catalysts for the dehydration of methanol to dimethyl ether. Ionic liquids incorporating an alkanesulfonic acid as a part of the cation, a complex acidic anion, [A(2)H](-), or both, proved to be good catalysts for this process, providing high conversions and selectivities. Homogeneous catalysis in the liquid state represents a novel approach to dimethyl ether synthesis.
Resumo:
Dimethyl ether (DME) is amongst one of the most promising alternative, renewable and clean fuels being considered as a future energy carrier. In this study, the comparative catalytic performance of γ-Al2O3 prepared from two common precursors (aluminum nitrate (AN) and aluminum chloride (AC)) is presented. The impact of calcination temperature was evaluated in order to optimize both the precursor and pre-treatment conditions for the production of DME from methanol in a fixed bed reactor. The catalysts were characterized by TGA, XRD, BET and TPD-pyridine. Under reaction conditions where the temperature ranged from 180 °C to 300 °C with a WHSV = 12.1 h−1 it was found that all the catalysts prepared from AN(η-Al2O3) showed higher activity, at all calcination temperatures, than those prepared from AC(γ-Al2O3). In this study the optimum catalyst was produced from AN and calcined at 550 °C. This catalyst showed a high degree of stability and had double the activity of the commercial γ-Al2O3 or 87% of the activity of commercial ZSM-5(80) at 250 °C.
Resumo:
Herein we investigate the use of CuO-ZnO-Al2O3 (CZA) with different solid acid catalysts (NH(4)ZSM-5. HZSM-5 or gamma-Al2O3) for the production of dimethyl ether from syngas. It was found that of the solid acids, which are necessary for the dehydration function of the admixed system, the CZA/HZSM-5 bifunctional catalyst with a 0.25 acid fraction showed high stability over a continuous period of 212 h.
As this particular system was observed to loose around 16.2% of its initial activity over this operating period this study further investigates the CZA/HZSM-5 bifunctional catalyst in terms of its deactivation mechanisms. TPO investigations showed that the catalyst deactivation was related to coke deposited on the metallic sites: interface between the metallic sites and the support near the metal-support: and on the support itself.
Resumo:
Biodegradable amphiphilic diblock copolymers based on an aliphatic ester block and various hydrophilic methacrylic monomers were synthesized using a novel hydroxyl-functionalized trithiocarbonate-based chain transfer agent. One protocol involved the one-pot simultaneous ring-opening polymerization (ROP) of the biodegradable monomer (3S)-cis-3,6-dimethyl-1,4-dioxane-2,5-dione (L-lactide, LA) and reversible addition–fragmentation chain transfer (RAFT) polymerization of 2-(dimethylamino)ethyl methacrylate (DMA) or oligo(ethylene glycol) methacrylate (OEGMA) monomer, with 4-dimethylaminopyridine being used as the ROP catalyst and 2,2′-azobis(isobutyronitrile) as the initiator for the RAFT polymerization. Alternatively, a two-step protocol involving the initial polymerization of LA followed by the polymerization of DMA, glycerol monomethacrylate or 2-(methacryloyloxy)ethyl phosphorylcholine using 4,4′-azobis(4-cyanovaleric acid) as a RAFT initiator was also explored. Using a solvent switch processing step, these amphiphilic diblock copolymers self-assemble in dilute aqueous solution. Their self-assembly provides various copolymer morphologies depending on the block compositions, as judged by transmission electron microscopy and dynamic light scattering. Two novel disulfide-functionalized PLA-branched block copolymers were also synthesized using simultaneous ROP of LA and RAFT copolymerization of OEGMA or DMA with a disulfide-based dimethacrylate. The disulfide bonds were reductively cleaved using tributyl phosphine to generate reactive thiol groups. Thiol–ene chemistry was utilized for further derivatization with thiol-based biologically important molecules and heavy metals for tissue engineering or bioimaging applications, respectively.
Resumo:
This paper describes the application of gene delivery vectors based on connecting together two well-defined low-generation poly(L-lysine) (PLL) dendrons using a disulfide-containing linker unit. We report that the transfection ability of these vectors in their own right is relatively low, because the low-generation number limits the endosomal buffering capacity. Importantly, however, we demonstrate that when applied in combination with Lipofectamine 2000 (TM), a vector from the cationic lipid family, these small cationic additives significantly enhance the levels of gene delivery (up to four-fold). Notably, the cationic additives have no effect on the levels of transfection observed with a cationic polymer, such as DEAE dextran. We therefore argue that the synergistic effects observed with Lipofectamine 2000 (TM) arise as a result of combining the delivery advantages of two different classes of vector within a single formulation, with our dendritic additives providing a degree of pH buffering within the endosome. As such, the data we present indicate that small dendritic structures, although previously largely overlooked for gene delivery owing to their inability to transfect in their own right, may actually be useful well-defined additives to well-established vector systems in order to enhance the gene delivery payload.
Resumo:
Introduction: Secretory leucocyte protease inhibitor and elafin are members of the whey acidic protein (WAP), or WAP four disulfide-core (WFDC), family of proteins and have multiple contributions to innate defence including inhibition of neutrophil serine proteases and inhibition of the inflammatory response to lipopolysaccharide (LPS). This study aimed to explore potential activities of WFDC12, a previously uncharacterised WFDC protein expressed in the lung. Methods: Recombinant expression and purification of WFDC12 were optimised in Escherichia coli. Antiprotease, antibacterial and immunomodulatory activities of recombinant WFDC12 were evaluated and levels of endogenous WFDC12 protein were characterised by immunostaining and ELISA. Results: Recombinant WFDC12 inhibited cathepsin G, but not elastase or proteinase-3 activity. Monocytic cells pretreated with recombinant WFDC12 before LPS stimulation produced significantly lower levels of the pro-inflammatory cytokines interleukin-8 and monocyte chemotactic protein-1 compared with cells stimulated with LPS alone. Recombinant WFDC12 became conjugated to fibronectin in a transglutaminase-mediated reaction and retained antiprotease activity. In vivo WFDC12 expression was confirmed by immunostaining of human lung tissue sections. WFDC12 levels in human bronchoalveolar lavage fluid from healthy and lung-injured patients were quantitatively compared, showing WFDC12 to be elevated in both patients with acute respiratory distress syndrome and healthy subjects treated with LPS, relative to healthy controls. Conclusions: Together, these results suggest a role for this lesser known WFDC protein in the regulation of lung inflammation.
Resumo:
An MS/MS based analytical strategy was followed to solve the complete sequence of two new peptides from frog (Odorrana schmackeri) skin secretion. This involved reduction and alkylation with two different alkylating agents followed by high resolution tandem mass spectrometry. De novo sequencing was achieved by complementary CID and ETD fragmentations of full-length peptides and of selected tryptic fragments. Heavy and light isotope dimethyl labeling assisted with annotation of sequence ion series. The identified primary structures are GCD[I/L]STCATHN[I/L]VNE[I/L]NKFDKSKPSSGGVGPESP-NH2 and SCNLSTCATHNLVNELNKFDKSKPSSGGVGPESF-NH2, i.e. two carboxyamidated 34 residue peptides with an aminoterminal intramolecular ring structure formed by a disulfide bridge between Cys2 and Cys7. Edman degradation analysis of the second peptide positively confirmed the exact sequence, resolving I/L discriminations. Both peptide sequences are novel and share homology with calcitonin, calcitonin gene related peptide (CGRP) and adrenomedullin from other vertebrates. Detailed sequence analysis as well as the 34 residue length of both O. schmackeri peptides, suggest they do not fully qualify as either calcitonins (32 residues) or CGRPs (37 amino acids) and may justify their classification in a novel peptide family within the calcitonin gene related peptide superfamily. Smooth muscle contractility assays with synthetic replicas of the S–S linked peptides on rat tail artery, uterus, bladder and ileum did not reveal myotropic activity.
Resumo:
The influx of arsenate, arsenite and dimethyl arsinic acid (DMA) were studied in 7-day-old excised maize roots (Zea mays L.), and then related to arsenate, arsenite and DMA toxicity. Arsenate, arsenite and DMA influx was all found concentration dependent with significant genotypic differences for arsenite and DMA. Arsenate influx in phosphate starved plants best fitted the four-parameter Michaelis-Menten model corresponding to an additive high and low affinity uptake system, while the uptake of phosphate replete plants followed the two parameter model of Michaelis-Menten kinetics. Arsenite influx was well described by the two parameter model of 'Michaelis-Menten' kinetics. DMA influx was comprised of linear phase and a hyperbolic phase. DMA influx was much lower than that for arsenite and arsenate. Arsenate and DMA influx decreased when phosphate was given as a pre-treatment as opposed to phosphate starved plants. The +P treatment tended to decrease influx by 50% for arsenate while this figure was 90% for DMA. Arsenite influx increasing slightly at higher arsenite concentrations in P starved plants but at lower arsenite concentrations, there was little or no difference in arsenite uptake. Low toxicity was found for DMA on maize compared with arsenate and arsenite and the relative toxicity of arsenic species was As(V) > As(III) >> DMA. © 2008 Springer Science+Business Media B.V.