13 resultados para digital delay-line interpolation


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The human body is an extremely challenging environment for the operation of wireless communications systems, not least because of the complex antenna-body electromagnetic interaction effects which can occur. This is further compounded by the impact of movement and the propagation characteristics of the local environment which all have an effect upon body centric communications channels. As the successful design of body area networks (BANs) and other types of body centric system is inextricably linked to a thorough understanding of these factors, the aim of this paper is to conduct a survey of the current state of the art in relation to propagation and channel models primarily for BANs but also considering other types of body centric communications. We initially discuss some of the standardization efforts performed by the Institute of Electrical and Electronics Engineers 802.15.6 task group before focusing on the two most popular types of technologies currently being considered for BANs, namely narrowband and Ultrawideband (UWB) communications. For narrowband communications the applicability of a generic path loss model is contended, before presenting some of the scenario specific models which have proven successful. The impacts of human body shadowing and small-scale fading are also presented alongside some of the most recent research into the Doppler and time dependencies of BANs. For UWB BAN communications, we again consider the path loss as well as empirical tap delay line models developed from a number of extensive channel measurement campaigns conducted by research institutions around the world. Ongoing efforts within collaborative projects such as Committee on Science and Technology Action IC1004 are also described. Finally, recent years have also seen significant developments in other areas of body centric communications such as off-body and body-to-body communications. We highlight some of the newest relevant research in these areas as well as discussing some of the advanced topics which are currently being addressed in the field of body centric communications. Key Points Channel models for body centric comms ©2014. The Authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a mixed cost-function adaptive initialization algorithm for the time domain equalizer in a discrete multitone (DMT)-based asymmetric digital subscriber line. Using our approach, a higher convergence rate than that of the commonly used least-mean square algorithm is obtained, whilst attaining bit rates close to the optimum maximum shortening SNR and the upper bound SNR. Furthermore, our proposed method outperforms the minimum mean-squared error design for a range of time domain equalizer (TEQ) filter lengths. The improved performance outweighs the small increase in computational complexity required. A block variant of our proposed algorithm is also presented to overcome the increased latency imposed on the feedback path of the adaptive system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: Digital pathology provides a digital environment for the management and interpretation of pathological images and associated data. It is becoming increasing popular to use modern computer based tools and applications in pathological education, tissue based research and clinical diagnosis. Uptake of this new technology is stymied by its single user orientation and its prerequisite and cumbersome combination of mouse and keyboard for navigation and annotation.

Methodology: In this study we developed SurfaceSlide, a dedicated viewing platform which enables the navigation and annotation of gigapixel digitised pathological images using fingertip touch. SurfaceSlide was developed using the Microsoft Surface, a 30 inch multitouch tabletop computing platform. SurfaceSlide users can perform direct panning and zooming operations on digitised slide images. These images are downloaded onto the Microsoft Surface platform from a remote server on-demand. Users can also draw annotations and key in texts using an on-screen virtual keyboard. We also developed a smart caching protocol which caches the surrounding regions of a field of view in multi-resolutions thus providing a smooth and vivid user experience and reducing the delay for image downloading from the internet. We compared the usability of SurfaceSlide against Aperio ImageScope and PathXL online viewer.

Conclusion: SurfaceSlide is intuitive, fast and easy to use. SurfaceSlide represents the most direct, effective and intimate human–digital slide interaction experience. It is expected that SurfaceSlide will significantly enhance digital pathology tools and applications in education and clinical practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A systematic design methodology is described for the rapid derivation of VLSI architectures for implementing high performance recursive digital filters, particularly ones based on most significant digit (msd) first arithmetic. The method has been derived by undertaking theoretical investigations of msd first multiply-accumulate algorithms and by deriving important relationships governing the dependencies between circuit latency, levels of pipe-lining and the range and number representations of filter operands. The techniques described are general and can be applied to both bit parallel and bit serial circuits, including those based on on-line arithmetic. The method is illustrated by applying it to the design of a number of highly pipelined bit parallel IIR and wave digital filter circuits. It is shown that established architectures, which were previously designed using heuristic techniques, can be derived directly from the equations described.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Real time digital signal processing requires the development of high performance arithmetic algorithms suitable for VLSI design. In this paper, a new online, circular coordinate system CORDIC algorithm is described, which has a constant scale factor. This algorithm was developed using a new Angular Representation (AR) model A radix 2 version of the CORDIC algorithm is presented, along with an architecture suitable for VLSI implementation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Power dissipation and robustness to process variation have conflicting design requirements. Scaling of voltage is associated with larger variations, while Vdd upscaling or transistor upsizing for parametric-delay variation tolerance can be detrimental for power dissipation. However, for a class of signal-processing systems, effective tradeoff can be achieved between Vdd scaling, variation tolerance, and output quality. In this paper, we develop a novel low-power variation-tolerant algorithm/architecture for color interpolation that allows a graceful degradation in the peak-signal-to-noise ratio (PSNR) under aggressive voltage scaling as well as extreme process variations. This feature is achieved by exploiting the fact that all computations used in interpolating the pixel values do not equally contribute to PSNR improvement. In the presence of Vdd scaling and process variations, the architecture ensures that only the less important computations are affected by delay failures. We also propose a different sliding-window size than the conventional one to improve interpolation performance by a factor of two with negligible overhead. Simulation results show that, even at a scaled voltage of 77% of nominal value, our design provides reasonable image PSNR with 40% power savings. © 2006 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors present a VLSI circuit for implementing wave digital filter (WDF) two-port adaptors. Considerable speedups over conventional designs have been obtained using fine grained pipelining. This has been achieved through the use of most significant bit (MSB) first carry-save arithmetic, which allows systems to be designed in which latency L is small and independent of either coefficient or input data wordlength. L is determined by the online delay associated with the computation required at each node in the circuit (in this case a multiply/add plus two separate additions). This in turn means that pipelining can be used to considerably enhance the sampling rate of a recursive digital filter. The level of pipelining which will offer enhancement is determined by L and is fine-grained rather than bit level. In the case of the circuit considered, L = 3. For this reason pipeline delays (half latches) have been introduced between every two rows of cells to produce a system with a once every cycle sample rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analysis of ≃19 500 narrow (≲200 km s-1) CIV λλ1548.2,1550.8 absorbers in ≃34 000 Sloan Digital Sky Survey quasar spectra is presented. The statistics of the number of absorbers as a function of outflow velocity shows that in approximately two-thirds of outflows, with multiple C IV absorbers present, absorbers are line-locked at the 500 km s-1 velocity separation of the C IV absorber doublet; appearing as 'triplets' in the quasar spectra. Line-locking is an observational signature of radiative line-driving in outflowing material, where the successive shielding of 'clouds' of material in the outflow locks the clouds together in outflow velocity. Line-locked absorbers are seen in both broad absorption line (BAL) quasars and non-BAL quasars with comparable frequencies and with velocities out to at least 20 000 km s-1. There are no detectable differences in the absorber properties and the dust content of single C IV doublets and line-locked C IV doublets. The gas associated with both single and line-locked CIV absorption systems includes material with a wide range of ionization potential (14-138 eV). Both single and line-locked CIV absorber systems show strong systematic trends in their ionization as a function of outflow velocity, with ionization decreasing rapidly with increasing outflow velocity. Initial simulations, employing CLOUDY, demonstrate that a rich spectrum of line-locked signals at various velocities may be expected due to significant opacities from resonance lines of Li-, He- and H-like ions of O, C and N, along with contributions from He II and HI resonance lines. The simulations confirm that line-driving can be the dominant acceleration mechanism for clouds with N(H I) ≃ 1019 cm-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Passive intermodulation (PIM) often limits the performance of communication systems with analog and digitally-modulated signals and especially of systems supporting multiple carriers. Since the origins of the apparently multiple physical sources of nonlinearity causing PIM are not fully understood, the behavioral models are frequently used to describe the process of PIM generation. In this paper a polynomial model of memoryless nonlinearity is deduced from PIM measurements of a microstrip line with distributed nonlinearity with two-tone CW signals. The analytical model of nonlinearity is incorporated in Keysight Technology’s ADS simulator to evaluate the metrics of signal fidelity in the receive band for analog and digitally-modulated signals. PIM-induced distortion and cross-band interference with modulated signals are compared to those with two-tone CW signals. It is shown that conventional metrics can be applied to quantify the effect of distributed nonlinearities on signal fidelity. It is found that the two-tone CW test provides a worst-case estimate of cross-band interference for two-carrier modulated signals whereas with a three-carrier signal PIM interference in the receive band is noticeably overestimated. The simulated constellation diagrams for QPSK signals demonstrate that PIM interference exhibits the distinctive signatures of correlated distortion and this indicates that there are opportunities for mitigating PIM interference and that PIM interference cannot be treated as noise. One of the interesting results is that PIM distortion on a transmission line results in asymmetrical regrowth of output PIM interference for modulated signals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of efficient assembly systems can significantly contribute to the profitability of products and the competitiveness of manufacturing industries. The configuration of a an efficient assembly line can be supported by suitable methodologies and techniques, such as design for manufacture and assembly, assembly sequence planning, assembly line balancing, lean manufacturing and optimization techniques. In this paper, these methods are applied with reference to the industrial case study of the assembly line of a Skycar light aircraft. The assembly process sequence is identified taking into account the analysis of the assembly structure and the required precedence constraints, and diverse techniques are applied to optimize the assembly line performance. Different line configurations are verified through discrete event simulation to assess the potential increase of efficiency and throughput in a digital environment and propose the most suitable configuration of the assembly line.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The recent drive towards timely multiple product realizations has caused most Manufacturing Enterprises (MEs) to develop more flexible assembly lines supported by better manufacturing design and planning. The aim of this work is to develop a methodology which will support feasibility analyses of assembly tasks, in order to simulate either a manufacturing process or a single work-cell in which digital human models act. The methodology has been applied in a case study relating to a railway industry. Simulations were applied to help standardize the methodology and suggest new solutions for realizing ergonomic and efficient assembly processes in the railway industry.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Droplet digital PCR (ddPCR) can be used to detect low frequency mutations in oncogene-driven lung cancer. The range of KRAS point mutations observed in NSCLC necessitates a multiplex approach to efficient mutation detection in circulating DNA. Here we report the design and optimisation of three discriminatory ddPCR multiplex assays investigating nine different KRAS mutations using PrimePCR™ ddPCR™ Mutation Assays and the Bio-Rad QX100 system. Together these mutations account for 95% of the nucleotide changes found in KRAS in human cancer. Multiplex reactions were optimised on genomic DNA extracted from KRAS mutant cell lines and tested on DNA extracted from fixed tumour tissue from a cohort of lung cancer patients without prior knowledge of the specific KRAS genotype. The multiplex ddPCR assays had a limit of detection of better than 1 mutant KRAS molecule in 2,000 wild-type KRAS molecules, which compared favourably with a limit of detection of 1 in 50 for next generation sequencing and 1 in 10 for Sanger sequencing. Multiplex ddPCR assays thus provide a highly efficient methodology to identify KRAS mutations in lung adenocarcinoma.