33 resultados para ddc:670
Resumo:
To compare the rejection rates of non-small cell lung cancer (NSCLC) samples obtained by differing sampling methods for testing by Sanger sequencing for epidermal growth factor receptor (EGFR) mutations. To assess the association between unsatisfactory outcomes and the quantity of DNA extracted from cytological versus histological samples.
Resumo:
Field configured assembly is a programmable force field method that permits rapid, "hands-free" manipulation, assembly, and integration of mesoscale objects and devices. In this method, electric fields, configured by specific addressing of receptor and counter electrode sites pre-patterned at a silicon chip substrate, drive the field assisted transport, positioning, and localization of mesoscale devices at selected receptor locations. Using this approach, we demonstrate field configured deterministic and stochastic self-assembly of model mesoscale devices, i.e., 50 mum diameter, 670 nm emitting GaAs-based light emitting diodes, at targeted receptor sites on a silicon chip. The versatility of the field configured assembly method suggests that it is applicable to self-assembly of a wide variety of functionally integrated nanoscale and mesoscale systems.
Resumo:
Leukocyte-derived matrix metalloproteinases (MMP) are implicated in the tissue destruction characteristic of tuberculosis (TB). The contribution of lung stromal cells to MMP activity in TB is unknown. Oncostatin M (OSM) is an important stimulus to extrapulmonary stromal MMP induction, but its role in regulation of pulmonary MMP secretion or pathophysiology of TB is unknown. We investigated OSM secretion from Mycobacterium tuberculosis (Mtb)-infected human monocytes/macrophages and the networking effects of such OSM on lung fibroblast MMP secretion. Mtb increased monocyte OSM secretion dose dependently in vitro. In vivo tuberculous granulomas immunostained positively for OSM. Further, conditioned media from Mtb-infected monocytes (CoMTb) induced monocyte OSM secretion (670 ± 55 versus 166 ± 14 pg/mL in controls), implicating an autocrine loop. Mtb-induced OSM secretion was prostaglandin (PG) sensitive, and required activation of surface G-protein coupled receptors. OSM induction was ERK MAP kinase dependent, p38-requiring but JNK-independent. OSM synergized with TNF-, a key cytokine in TB granuloma formation, to stimulate pulmonary fibroblast MMP-1/-3 secretion, while suppressing secretion of tissue inhibitors of metalloproteinases-1/-2. In summary, Mtb infection of monocytes results in PG-dependent OSM secretion, which synergizes with TNF- to drive functionally unopposed fibroblast MMP-1/-3 secretion, demonstrating a previously unrecognized role for OSM in TB.
Resumo:
Recent studies have challenged the view that Langerhans cells (LCs) constitute the exclusive antigen-presenting cells of the skin and suggest that the dermal dendritic cell (DDC) network is exceedingly complex. Using knockin mice to track and ablate DCs expressing langerin (CD207), we discovered that the dermis contains five distinct DC subsets and identified their migratory counterparts in draining lymph nodes. Based on this refined classification, we demonstrated that the quantitatively minor CD207+ CD103+ DDC subset is endowed with the unique capability of cross-presenting antigens expressed by keratinocytes irrespective of the presence of LCs. We further showed that Y-Ae, an antibody that is widely used to monitor the formation of complexes involving I-Ab molecules and a peptide derived from the I-E alpha chain, recognizes mature skin DCs that express I-Ab molecules in the absence of I-E alpha. Knowledge of this extra reactivity is important because it could be, and already has been, mistakenly interpreted to support the view that antigen transfer can occur between LCs and DDCs. Collectively, these data revisit the transfer of antigen that occurs between keratinocytes and the five distinguishable skin DC subsets and stress the high degree of functional specialization that exists among them.
Resumo:
Developing a desirable framework for handling inconsistencies in software requirements specifications is a challenging problem. It has been widely recognized that the relative priority of requirements can help developers to make some necessary trade-off decisions for resolving con- flicts. However, for most distributed development such as viewpoints-based approaches, different stakeholders may assign different levels of priority to the same shared requirements statement from their own perspectives. The disagreement in the local levels of priority assigned to the same shared requirements statement often puts developers into a dilemma during the inconsistency handling process. The main contribution of this paper is to present a prioritized merging-based framework for handling inconsistency in distributed software requirements specifications. Given a set of distributed inconsistent requirements collections with the local prioritization, we first construct a requirements specification with a prioritization from an overall perspective. We provide two approaches to constructing a requirements specification with the global prioritization, including a merging-based construction and a priority vector-based construction. Following this, we derive proposals for handling inconsistencies from the globally prioritized requirements specification in terms of prioritized merging. Moreover, from the overall perspective, these proposals may be viewed as the most appropriate to modifying the given inconsistent requirements specification in the sense of the ordering relation over all the consistent subsets of the requirements specification. Finally, we consider applying negotiation-based techniques to viewpoints so as to identify an acceptable common proposal from these proposals.
Determining the Reaeration Coefficient and Hydrodynamic Properties of Rivers Using Inert Gas Tracers
Resumo:
Various contaminants which can be aerobically degraded find their way directly or indirectly into surface water bodies. The reaeration coefficient (K2) characterises the rate at which oxygen can transfer from the atmosphere across the air-water interface following oxygen depletion in a water body. Other mechanisms (like advection, dispersion and transient storage) determine how quickly the contaminants can spread in the water, affecting their spatial and temporal concentrations. Tracer methods involving injection of a gas into the water body have traditionally been used for direct (in-situ) measurement of K2 in a given reach. This paper shows how additional modelling of tracer test results can be used to quantify also hydrodynamic mechanisms (e.g. dispersion and storage exchange coefficients, etc.). Data from three tracer tests conducted in the River Lagan (Northern Ireland) using an inert gas (krypton, Kr) are re-analysed using two solute transport models (ADM, TSM) and an inverse-modelling framework (OTIS-P). Results for K2 are consistent with previously published values for this reach (K2(20)~10-40 d-1). The storage area constituted 30-60% of the main cross-section area and the storage exchange rate was between 2.5×10-3-3.2×10-3s-1. The additional hydrodynamic parameters obtained give insight into transport and dispersion mechanisms within the reach.