3 resultados para data integration


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Here, we describe gene expression compositional assignment (GECA), a powerful, yet simple method based on compositional statistics that can validate the transfer of prior knowledge, such as gene lists, into independent data sets, platforms and technologies. Transcriptional profiling has been used to derive gene lists that stratify patients into prognostic molecular subgroups and assess biomarker performance in the pre-clinical setting. Archived public data sets are an invaluable resource for subsequent in silico validation, though their use can lead to data integration issues. We show that GECA can be used without the need for normalising expression levels between data sets and can outperform rank-based correlation methods. To validate GECA, we demonstrate its success in the cross-platform transfer of gene lists in different domains including: bladder cancer staging, tumour site of origin and mislabelled cell lines. We also show its effectiveness in transferring an epithelial ovarian cancer prognostic gene signature across technologies, from a microarray to a next-generation sequencing setting. In a final case study, we predict the tumour site of origin and histopathology of epithelial ovarian cancer cell lines. In particular, we identify and validate the commonly-used cell line OVCAR-5 as non-ovarian, being gastrointestinal in origin. GECA is available as an open-source R package.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This research paper presents the work on feature recognition, tool path data generation and integration with STEP-NC (AP-238 format) for features having Free form / Irregular Contoured Surface(s) (FICS). Initially, the FICS features are modelled / imported in UG CAD package and a closeness index is generated. This is done by comparing the FICS features with basic B-Splines / Bezier curves / surfaces. Then blending functions are caculated by adopting convolution theorem. Based on the blending functions, contour offsett tool paths are generated and simulated for 5 axis milling environment. Finally, the tool path (CL) data is integrated with STEP-NC (AP-238) format. The tool path algorithm and STEP- NC data is tested with various industrial parts through an automated UFUNC plugin.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multiple myeloma is characterized by genomic alterations frequently involving gains and losses of chromosomes. Single nucleotide polymorphism (SNP)-based mapping arrays allow the identification of copy number changes at the sub-megabase level and the identification of loss of heterozygosity (LOH) due to monosomy and uniparental disomy (UPD). We have found that SNP-based mapping array data and fluorescence in situ hybridization (FISH) copy number data correlated well, making the technique robust as a tool to investigate myeloma genomics. The most frequently identified alterations are located at 1p, 1q, 6q, 8p, 13, and 16q. LOH is found in these large regions and also in smaller regions throughout the genome with a median size of 1 Mb. We have identified that UPD is prevalent in myeloma and occurs through a number of mechanisms including mitotic nondisjunction and mitotic recombination. For the first time in myeloma, integration of mapping and expression data has allowed us to reduce the complexity of standard gene expression data and identify candidate genes important in both the transition from normal to monoclonal gammopathy of unknown significance (MGUS) to myeloma and in different subgroups within myeloma. We have documented these genes, providing a focus for further studies to identify and characterize those that are key in the pathogenesis of myeloma.