6 resultados para data fitting
Resumo:
Experimental results at X-band are used to compare the electromagnetic scattering from a printed reflectarray cell, which is constructed on 500 mu m thick layers of three different nematic state liquid crystals. It is shown that a small voltage can be used to vary the permittivity of the tunable substrate and thereby control the phase of the reflected signals. Numerical results using Ansoft HFSS are compared with the measured phase, resonant frequencies and signal attenuation for two orientations of the liquid crystal molecules. Data fitting is employed to quantify the loss tangent and the permittivity values of the three anisotropic specimens. The performance trade-offs that are imposed by the use of commercially available materials are discussed, and the computer model is used to specify the electrical properties of a liquid crystal mixture, which can provide a signal loss of <1 dB and a dynamic phase range of 300 degrees from the patch elements at 10 GHz.
Resumo:
A robust method for fitting to the results of gel electrophoresis assays of damage to plasmid DNA caused by radiation is presented. This method makes use of nonlinear regression to fit analytically derived dose response curves to observations of the supercoiled, open circular and linear plasmid forms simultaneously, allowing for more accurate results than fitting to individual forms. Comparisons with a commonly used analysis method show that while there is a relatively small benefit between the methods for data sets with small errors, the parameters generated by this method remain much more closely distributed around the true value in the face of increasing measurement uncertainties. This allows for parameters to be specified with greater confidence, reflected in a reduction of errors on fitted parameters. On test data sets, fitted uncertainties were reduced by 30%, similar to the improvement that would be offered by moving from triplicate to fivefold repeats (assuming standard errors). This method has been implemented in a popular spreadsheet package and made available online to improve its accessibility. (C) 2011 by Radiation Research Society
Resumo:
Coxian phase-type distributions are becoming a popular means of representing survival times within a health care environment. They are favoured as they show a distribution as a system of phases and can allow for an easy visual representation of the rate of flow of patients through a system. Difficulties arise, however, in determining the parameter estimates of the Coxian phase-type distribution. This paper examines ways of making the fitting of the Coxian phase-type distribution less cumbersome by outlining different software packages and algorithms available to perform the fit and assessing their capabilities through a number of performance measures. The performance measures rate each of the methods and help in identifying the more efficient. Conclusions drawn from these performance measures suggest SAS to be the most robust package. It has a high rate of convergence in each of the four example model fits considered, short computational times, detailed output, convergence criteria options, along with a succinct ability to switch between different algorithms.
Resumo:
Recent experimental neutron diffraction data and ab initio molecular dynamics simulation of the ionic liquid dimethylimidazolium chloride ([dmim]Cl) have provided a structural description of the system at the molecular level. However, partial radial distribution functions calculated from the latter, when compared to previous classical simulation results, highlight some limitations in the structural description offered by force fieldbased simulations. With the availability of ab initio data it is possible to improve the classical description of [dmim]Cl by using the force matching approach, and the strategy for fitting complex force fields in their original functional form is discussed. A self-consistent optimization method for the generation of classical potentials of general functional form is presented and applied, and a force field that better reproduces the observed first principles forces is obtained. When used in simulation, it predicts structural data which reproduces more faithfully that observed in the ab initio studies. Some possible refinements to the technique, its application, and the general suitability of common potential energy functions used within many ionic liquid force fields are discussed.
Resumo:
Many of the most interesting questions ecologists ask lead to analyses of spatial data. Yet, perhaps confused by the large number of statistical models and fitting methods available, many ecologists seem to believe this is best left to specialists. Here, we describe the issues that need consideration when analysing spatial data and illustrate these using simulation studies. Our comparative analysis involves using methods including generalized least squares, spatial filters, wavelet revised models, conditional autoregressive models and generalized additive mixed models to estimate regression coefficients from synthetic but realistic data sets, including some which violate standard regression assumptions. We assess the performance of each method using two measures and using statistical error rates for model selection. Methods that performed well included generalized least squares family of models and a Bayesian implementation of the conditional auto-regressive model. Ordinary least squares also performed adequately in the absence of model selection, but had poorly controlled Type I error rates and so did not show the improvements in performance under model selection when using the above methods. Removing large-scale spatial trends in the response led to poor performance. These are empirical results; hence extrapolation of these findings to other situations should be performed cautiously. Nevertheless, our simulation-based approach provides much stronger evidence for comparative analysis than assessments based on single or small numbers of data sets, and should be considered a necessary foundation for statements of this type in future.