3 resultados para cotinine
Resumo:
BACKGROUND: Smoking is a recognized risk factor for the initiation and progression of periodontitis. However, the mechanism by which smoking induces its negative effects on the periodontium is not clear. This study aimed to test the hypothesis that synergy may occur between cotinine and bacterial products isolated from 3 putative periodontopathogens.
METHODS: A chick embryo toxin assay was used to investigate bacterial toxins (cell-free extracellular toxins and cell-free cell lysates) from 5 species with and without cotinine. A total of 9 putative periodontopathogens (3 species) and 2 non-oral controls (2 species) were studied. The periodontal species were: Prevotella intermedia (n = 4), Prevotella nigrescens (n = 4), and Porphyromonas gingivalis (n = 1). The control species tested were: Staphylococcus aureus (n = 1) and Escherichia coli (n = 1).
RESULTS: The toxicity kill was significantly greater than expected by simple addition alone (P <0.05, Fisher's exact test) between cotinine (800 ng/ml) and 1) the cell-free extracellular toxins of P. nigrescens MH1 and 2) the cell-free cell lysates of P. intermedia MH2. Synergy occurred with cotinine plus the cell-free extracellular toxins in all but 3 periodontal isolates, and the cell-free cell lysates in all but 2 periodontal isolates. Cotinine significantly (P <0.05, Fisher's exact test) enhanced the effects of cell-free extracellular toxins and cell lysates from one control species (E. coli), but not the other (S. aureus).
CONCLUSIONS: These findings indicate that synergy in an in vitro assay can occur between cotinine and toxins from putative periodontopathogens. This may be one important mechanism by which smoking increases the severity of periodontitis.
Resumo:
The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping. © 2013 McArt et al.
Resumo:
BACKGROUND: Cigarette smoking is one of the most significant risk factors in the development and further advancement of inflammatory periodontal disease, however, the role of either nicotine or its primary metabolite cotinine in the progression of periodontitis is unclear. This study aimed to investigate the effects of nicotine and cotinine on the attachment and growth of fibroblasts derived from human periodontal ligament (PDL).
METHODS: Primary cultures were prepared from the roots of extracted premolar teeth. Cells were used at both low (P3 to P5) and high (P11 to P13) passage. Cell numbers were determined over 14 days using either the 3-(4,5-dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay or with a Coulter counter. Cultures were exposed to culture medium supplemented with 1) 15% fetal calf serum (FCS) only; 2) 1% FCS only; 3) 1% FCS and nicotine (concentration range 5 ng/ml to 10 mg/ml); or 4) 1% FCS and cotinine (concentration range 0.5 ng/ml to 10 microg/ml).
RESULTS: Nicotine significantly (P <0.05, by ANOVA) inhibits attachment and growth of low passage cells at concentrations >1 mg/ml and high passage PDL fibroblasts at concentrations >0.5 mg/ml. Cotinine, at the highest concentration used (10 microg/ml), appeared to inhibit attachment and growth of both low and high passage fibroblasts but this was not statistically significant (P >0.05, by ANOVA).
CONCLUSIONS: Tobacco products inhibit attachment and growth of human PDL fibroblasts. This may partly explain the role of these substances in the progression of periodontitis.