92 resultados para corneal thickness
Resumo:
PURPOSE:
We sought to measure the impact of central corneal thickness (CCT), a possible risk factor for glaucoma damage, and corneal hysteresis, a proposed measure of corneal resistance to deformation, on various indicators of glaucoma damage.
DESIGN:
Observational study.
METHODS:
Adult patients of the Wilmer Glaucoma Service underwent measurement of hysteresis on the Reichert Ocular Response Analyzer and measurement of CCT by ultrasonic pachymetry. Two glaucoma specialists (H.A.Q., N.G.C.) reviewed the chart to determine highest known intraocular pressure (IOP), target IOP, diagnosis, years with glaucoma, cup-to-disk ratio (CDR), mean defect (MD), pattern standard deviation (PSD), glaucoma hemifield test (GHT), and presence or absence of visual field progression.
RESULTS:
Among 230 subjects, the mean age was 65 +/- 14 years, 127 (55%) were female, 161 (70%) were white, and 194 (85%) had a diagnosis of primary open-angle glaucoma (POAG) or suspected POAG. In multivariate generalized estimating equation models, lower corneal hysteresis value (P = .03), but not CCT, was associated with visual field progression. When axial length was included in the model, hysteresis was not a significant risk factor (P = .09). A thinner CCT (P = .02), but not hysteresis, was associated with a higher CDR at the most recent examination. Neither CCT nor hysteresis was associated with MD, PSD, or GHT "outside normal limits."
CONCLUSIONS:
Thinner CCT was associated with the state of glaucoma damage as indicated by CDR. Axial length and corneal hysteresis were associated with progressive field worsening.
Resumo:
PURPOSE: To describe the distribution of central corneal thickness (CCT), intraocular pressure (IOP), and their determinants and association with glaucoma in Chinese adults.DESIGN: Population-based cross-sectional study.METHODS: Chinese adults aged 50 years and older were identified using cluster random sampling in Liwan District, Guangzhou. CCT (both optical [OCCT] and ultrasound [UCCT]), intraocular pressure (by Tonopen, IOP), refractive error (by autorefractor, RE), radius of corneal curvature (RCC), axial length (AL), and body mass index (BMI) were measured, and history of hypertension and diabetes (DM) was collected by questionnaire. Right eye data were analyzed.RESULTS: The mean values of OCCT, UCCT, and IOP were 512 ± 29.0 μm, 542 ± 31.4 μm, and 15.2 ± 3.1 mm Hg, respectively. In multiple regression models, CCT declined with age (P < .001) and increased with greater RCC (P < .001) and DM (P = .037). IOP was positively associated with greater CCT (P < .001), BMI (P < .001), and hypertension (P < .001). All 25 persons with open-angle glaucoma had IOP <21 mm Hg. CCT did not differ significantly between persons with and without open- or closed-angle glaucoma. Among 65 persons with ocular hypertension (IOP >97.5th percentile), CCT (555 ± 29 μm) was significantly (P = .01) higher than for normal persons.CONCLUSIONS: The distributions of CCT and IOP in this study are similar to that for other Chinese populations, though IOP was lower than for European populations, possibly due to lower BMI and blood pressure. Glaucoma with IOP <21 mm Hg is common in this population. We found no association between glaucoma and CCT, though power (0.3) for this analysis was low.
Resumo:
PURPOSE: To assess the correlation between central corneal thickness (CCT) and anterior scleral thickness (ST) in patients of primary open-angle glaucoma (POAG), normal tension glaucoma (NTG), and ocular hypertension (OHT). PATIENTS AND METHODS: Consecutive patients with OHT, POAG, NTG, and normal individuals were recruited. CCT was measured by ultrasonic pachymetry, whereas ST was measured using ultrasonic biomicroscopy at the temporal quadrant, 2'mm posterior to the scleral spur. Investigators were masked to the diagnosis and CCT/ ultrasonic biomicroscopy data. Correlation between mean CCT and ST was analyzed. RESULTS: One hundred and twenty-four subjects (31 with OHT, 31 with POAG, 31 with NTG, and 31 normal individuals) were enrolled. The CCT (OHT 548.06±30.45'µm; POAG 519.39±42.95'µm; NTG 505.81±27.23'µm; controls 529.90±43.40'µm) was found to be thicker in patients with OHT than POAG (P=0.004) or NTG (P
Resumo:
Objective: Acquired pit-like changes of the optic nerve head (APON) are characteristic of glaucomatous damage and may be a sign of a localized susceptibility of the optic nerve. Thus, it is possible that biomechanical properties of the ocular tissues may play a pressure-independent role in the pathogenesis of glaucoma. Corneal hysteresis (CH) appears to provide information of the biomechanical properties of the ocular hull tissues. The purpose of this study was to compare CH of patients with primary open angle glaucoma (POAG) with and without APON. Methods: A prospective case control study was done. POAG patients with and without APON were measured using the Ocular Response Analyzer by masked investigators. Patients in both groups were matched for sex, age, corneal thickness, and type of glaucoma according to maximal IOP (NTG or POAG). Statistical analysis was done using ANOVA. Results: Corneal hysteresis of 16 glaucomatous eyes with APON and 32 controls (glaucoma without APON) was measured. The mean (±SD) CH in the APON group was 8.89 (±1.53) and 10.2 (±1.05) in the control group. The difference is statistically significant (p = 0.005). Conclusions: Corneal hysteresis in POAG patients with APON was significantly lower than in patients that did not have such structural changes of the optic disc. These findings may reflect pressure-independent mechanisms involved in the pathogenesis of such glaucomatous optic nerve changes. © Springer-Verlag 2007.
Resumo:
PURPOSE OF REVIEW:
Highlights recent studies relating to the impact of corneal structure and biomechanical properties on glaucoma evaluation and management.
RECENT FINDINGS:
Central corneal thickness has been shown to play a role in the interpretation of intraocular pressure. Central corneal thickness has also been suggested as a glaucoma risk factor. The potential role of other corneal factors, such as stromal makeup, in the accurate measurement of intraocular pressure and the assessment of glaucoma risk remains to be determined.
SUMMARY:
Improved understanding of central corneal thickness and corneal biomechanical properties may someday lead to a better understanding of glaucoma risk and its assessment.
Resumo:
PURPOSE: To estimate the relationships between ocular parameters and tonometrically measured intraocular pressure (IOP), to determine the influence of ocular parameters on different instrument measurements of IOP, and to evaluate the association of ocular parameters with a parameter called hysteresis. METHODS: Patients presenting at a glaucoma clinic were recruited for this study. Subjects underwent IOP measurement with the Goldmann applanation tonometer (GAT), the TonoPen, and the Reichert Ocular Response Analyzer (ORA), and also measurements of central corneal thickness (CCT), axial length, corneal curvature, corneal astigmatism, central visual acuity, and refractive error. Chart information was reviewed to determine glaucoma treatment history. The ORA instrument provided a measurement called corneal hysteresis. The association between measured IOP and the other ocular characteristics was estimated using generalized estimating equations. RESULTS: Among 230 patients, IOP measurements from the TonoPen read lowest, and ORA read highest, and GAT measurements were closest to the mean IOP of the 3 instruments. In a multiple regression model adjusting for age, sex, race, and other ocular characteristics, a 10 microm increase in CCT was associated with an increase of 0.79 mm Hg measured IOP in untreated eyes (P<0.0001). Of the 3 tonometers, GAT was the least affected by CCT (0.66 mm Hg/10 mum, P<0.0001). Hysteresis was significantly correlated with CCT with a modest correlation coefficient (r=0.20, P<0.0007). CONCLUSIONS: Among parameters related to measured IOP, features in addition to CCT, such as hysteresis and corneal curvature, may also be important. Tonometric instruments seem to be affected differently by various physiologic characteristics.
Resumo:
PURPOSE: To evaluate the association between corneal hysteresis and axial length/refractive error among rural Chinese secondary school children. DESIGN: Cross-sectional cohort study. METHODS: Refractive error (cycloplegic auto-refraction with subjective refinement), central corneal thickness (CCT) and axial length (ultrasonic measurement), intraocular pressure (IOP), and corneal hysteresis (Reichert Ocular Response Analyzer) were measured on a rural school-based cohort of children. RESULTS: Among 1,233 examined children, the mean age was 14.7 +/- 0.8 years and 699 (56.7%) were girls. The mean spherical equivalent (n = 1,232) was -2.2 +/- 1.6 diopters (D), axial length (n = 643) was 23.7 +/- 1.1 mm, corneal hysteresis (n = 1,153) was 10.7 +/- 1.6 mm Hg, IOP (n = 1,153) was 17.0 +/- 3.4 mm Hg, and CCT (n = 1,226) was 553 +/- 33 microns. In linear regression models, longer axial length was significantly (P < .001 for both) associated with lower corneal hysteresis and higher IOP. Hysteresis in this population was significantly (P < .001) lower than has previously been reported for normal White children (n = 42, 12.3 +/- 1.3 mm Hg), when adjusting for age and gender. This difference did not appear to depend on differences in axial length between the populations, as it persists when only Chinese children with normal uncorrected vision are included. CONCLUSIONS: Prospective studies will be needed to determine if low hysteresis places eyes at risk for axial elongation secondary or if primary elongation results in lower hysteresis.
Resumo:
PURPOSE: Low corneal hysteresis is associated with longer axial length in Chinese secondary school children. The authors sought to explore this association in primary school children. METHODS: LogMAR presenting visual acuity, cycloplegic refractive error, ocular biometry, central corneal thickness (CCT), and corneal hysteresis (CH) was assessed for children in grades 1 to 3 at an academically competitive urban school in Shantou, China. RESULTS: Among 872 eligible children (mean age, 8.6 ± 2.1 years), 651 (74.7%) completed the examination. Among 1299 examined eyes, 111 (8.5%) had uncorrected vision ≤6/12. Mean spherical equivalent refractive error for all eyes was +0.26 ± 1.41 D, and axial length (AL) was 22.7 ± 0.90 mm. CH for the lowest (mean AL, 21.7 ± 0.39 mm), two middle (mean AL, 22.4 ± 0.15 and 22.9 ± 0.15 mm), and highest quartiles (mean AL, 23.7 ± 0.74 mm) of AL were 10.6 ± 2.1 mm Hg, 10.4 ± 2.1 mm Hg, 10.3 ± 2.3 mm Hg, and 10.2 ± 2.3 mm Hg respectively (age- and gender-adjusted Pearson's correlation coefficient r = -0.052; P = 0.001). In generalized estimating equation models adjusting for age, gender, and CCT, lower CH was significantly associated with longer AL (P < 0.001) and more myopic refractive error (P = 0.001). CONCLUSIONS: CH measurement is practical in young children because this is when myopia undergoes its most rapid progression. Prospective follow-up of this cohort at high risk for myopia is under way to determine whether low CH is predictive, or a consequence, of long AL.
Resumo:
PURPOSE: Recent studies report that increased corneal edema because of contact lens wear under closed lids is associated with elevated Goldmann intraocular pressure (GAT IOP). We sought to assess whether the impact of postoperative corneal edema on GAT IOP would be similar and to determine the differential effect of different amounts of edema. METHODS: The setting is a tertiary level cataract clinic in Shantou, China. Pre- and postoperative (day 1) GAT IOP, central corneal thickness (CCT), corneal hysteresis, corneal resistance factor, and radius of corneal curvature were measured for consecutive patients undergoing phacoemulsification surgery by 2 experienced surgeons. Corneal edema was calculated as the percentage increase in CCT. RESULTS: Among 136 subjects (mean age, 62.5 ± 15.4 years; 53.7% women), the mean increase in CCT was 10.3% postoperatively. Greater corneal edema was associated with lower GAT IOP in unadjusted analyses (P < 0.03) and in linear regression models (P < 0.01). In the model, higher corneal resistance factor (P < 0.001), lower corneal hysteresis (P < 0.001), and steeper radius of corneal curvature (P < 0.001) were associated with higher GAT IOP. Among subjects with edema < the median, edema was associated with lower GAT IOP (P = 0.004), whereas among those with edema ≥ the median, edema was not associated with GAT IOP. An increase in CCT of 7% was associated with an 8 mm Hg underestimation of GAT IOP in our models. CONCLUSIONS: The effect of postoperative edema on GAT IOP seems to be the opposite of contact lens-induced edema. The magnitude of the effect is potentially relevant to patient management.
Resumo:
BACKGROUND: We sought to determine whether corneal biomechanical parameters are predictive of reduction in axial length after anti-metabolite trabeculectomy. METHODS: Chinese subjects undergoing trabeculectomy with mitomycin C by a single experienced surgeon underwent the following measurements: Corneal hysteresis (CH, Ocular Response Analyzer, Reichert Ophthalmic Instruments), Goldmann intra-ocular pressure (IOP), central corneal thickness (CCT) and axial length (AL, IOLMaster, Carl Zeiss Meditec, Dublin, CA) were measured pre-operatively, and AL, CH and IOP were measured 1 day and 1 week post-operatively. RESULTS: Mean age of 31 subjects was 52.0 ± 15.2 years, and 15 (48.4%) were female. The mean pre-operative IOP of 21.4 ± 9.3 mmHg was reduced to 8.2 ± 4.6 mmHg 1 day and 11.0 ± 4.4 mmHg 1 week post-operatively (p < 0.001). AL declined from 22.99 ± 0.90 to 22.76 ± 0.87 mm at 1 day and 22.74 ± 0.9 mm at 1 week; 30/31 (%) eyes had a decline in AL (p < 0.001, sign test). In multivariate linear regression models including post-operative data from 1 day and 1 week, greater decline in Goldmann IOP (p < 0.0001, greater pre-op axial length (p < 0.001) and lower pre-operative CH (p = 0.03), were all associated with greater decline in post-operative axial length. CONCLUSIONS: Eyes with lesser ability of the ocular coat to absorb energy (lower CH) had significantly greater decrease in axial length after trabeculectomy-induced IOP-lowering.
Resumo:
OBJECTIVES: To determine effective and efficient monitoring criteria for ocular hypertension [raised intraocular pressure (IOP)] through (i) identification and validation of glaucoma risk prediction models; and (ii) development of models to determine optimal surveillance pathways.
DESIGN: A discrete event simulation economic modelling evaluation. Data from systematic reviews of risk prediction models and agreement between tonometers, secondary analyses of existing datasets (to validate identified risk models and determine optimal monitoring criteria) and public preferences were used to structure and populate the economic model.
SETTING: Primary and secondary care.
PARTICIPANTS: Adults with ocular hypertension (IOP > 21 mmHg) and the public (surveillance preferences).
INTERVENTIONS: We compared five pathways: two based on National Institute for Health and Clinical Excellence (NICE) guidelines with monitoring interval and treatment depending on initial risk stratification, 'NICE intensive' (4-monthly to annual monitoring) and 'NICE conservative' (6-monthly to biennial monitoring); two pathways, differing in location (hospital and community), with monitoring biennially and treatment initiated for a ≥ 6% 5-year glaucoma risk; and a 'treat all' pathway involving treatment with a prostaglandin analogue if IOP > 21 mmHg and IOP measured annually in the community.
MAIN OUTCOME MEASURES: Glaucoma cases detected; tonometer agreement; public preferences; costs; willingness to pay and quality-adjusted life-years (QALYs).
RESULTS: The best available glaucoma risk prediction model estimated the 5-year risk based on age and ocular predictors (IOP, central corneal thickness, optic nerve damage and index of visual field status). Taking the average of two IOP readings, by tonometry, true change was detected at two years. Sizeable measurement variability was noted between tonometers. There was a general public preference for monitoring; good communication and understanding of the process predicted service value. 'Treat all' was the least costly and 'NICE intensive' the most costly pathway. Biennial monitoring reduced the number of cases of glaucoma conversion compared with a 'treat all' pathway and provided more QALYs, but the incremental cost-effectiveness ratio (ICER) was considerably more than £30,000. The 'NICE intensive' pathway also avoided glaucoma conversion, but NICE-based pathways were either dominated (more costly and less effective) by biennial hospital monitoring or had a ICERs > £30,000. Results were not sensitive to the risk threshold for initiating surveillance but were sensitive to the risk threshold for initiating treatment, NHS costs and treatment adherence.
LIMITATIONS: Optimal monitoring intervals were based on IOP data. There were insufficient data to determine the optimal frequency of measurement of the visual field or optic nerve head for identification of glaucoma. The economic modelling took a 20-year time horizon which may be insufficient to capture long-term benefits. Sensitivity analyses may not fully capture the uncertainty surrounding parameter estimates.
CONCLUSIONS: For confirmed ocular hypertension, findings suggest that there is no clear benefit from intensive monitoring. Consideration of the patient experience is important. A cohort study is recommended to provide data to refine the glaucoma risk prediction model, determine the optimum type and frequency of serial glaucoma tests and estimate costs and patient preferences for monitoring and treatment.
FUNDING: The National Institute for Health Research Health Technology Assessment Programme.
Resumo:
Keratoconus, a common inherited ocular disorder resulting in progressive corneal thinning, is the leading indication for corneal transplantation in the developed world. Genome-wide association studies have identified common SNPs 100 kb upstream of ZNF469 strongly associated with corneal thickness. Homozygous mutations in ZNF469 and PR domain-containing protein 5 (PRDM5) genes result in brittle cornea syndrome (BCS) Types 1 and 2, respectively. BCS is an autosomal recessive generalized connective tissue disorder associated with extreme corneal thinning and a high risk of corneal rupture. Some individuals with heterozygous PRDM5 mutations demonstrate a carrier ocular phenotype, which includes a mildly reduced corneal thickness, keratoconus and blue sclera. We hypothesized that heterozygous variants in PRDM5 and ZNF469 predispose to the development of isolated keratoconus. We found a significant enrichment of potentially pathologic heterozygous alleles in ZNF469 associated with the development of keratoconus (P = 0.00102) resulting in a relative risk of 12.0. This enrichment of rare potentially pathogenic alleles in ZNF469 in 12.5% of keratoconus patients represents a significant mutational load and highlights ZNF469 as the most significant genetic factor responsible for keratoconus identified to date.
Resumo:
AIM: To investigate the safety and potential savings of decreasing medication use in low-risk patients with ocular hypertension (OH).
METHODS: Patients with OH receiving pressure-lowering medication identified by medical record review at a university hospital underwent examination by a glaucoma specialist with assessment of visual field (VF), vertical cup-to-disc ratio (vCDR), central corneal thickness and intraocular pressure (IOP). Subjects with estimated 5-year risk of glaucoma conversion <15% were asked to discontinue ≥1 medication, IOP was remeasured 1 month later and risk was re-evaluated at 1 year.
RESULTS: Among 212 eyes of 126 patients, 44 (20.8%) had 5-year risk >15% and 14 (6.6%) had unreliable baseline VF. At 1 month, 15 patients (29 eyes, 13.7%) defaulted follow-up or refused to discontinue medication and 11 eyes (5.2%) had risk >15%. The remaining 69 patients (107 eyes, 50.7%) successfully discontinued 141 medications and completed 1-year follow-up. Mean IOP (20.5±2.65 mm Hg vs 20.3±3.40, p=0.397) did not change, though mean VF pattern SD (1.58±0.41 dB vs 1.75±0.56 dB, p=0.001) and glaucoma conversion risk (7.31±3.74% vs 8.76±6.28%, p=0.001) increased at 1 year. Mean defect decreased (-1.42±1.60 vs -1.07±1.52, p=0.022). One eye (0.47%) developed a repeatable VF defect and 13 eyes (6.1%) had 5-year risk >15% at 1 year. The total 1-year cost of medications saved was US$4596.
CONCLUSIONS: Nearly half (43.9%) of low-risk OH eyes in this setting could safely reduce medications over 1 year, realising substantial savings.Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://group.bmj.com/group/rights-licensing/permissions.
Resumo:
Objective: To study the population distribution and longitudinal changes in anterior chamber angle width and its determinants among Chinese adults. Design: Prospective cohort, population-based study. Participants: Persons aged 35 years or more residing in Guangzhou, China, who had not previously undergone incisional or laser eye surgery. Methods: In December 2008 and December 2010, all subjects underwent automated keratometry, and a random 50% sample had anterior segment optical coherence tomography with measurement of angle-opening distance at 500 μm (AOD500), angle recess area (ARA), iris thickness at 750 μm (IT750), iris curvature, pupil diameter, corneal thickness, anterior chamber width (ACW), lens vault (LV), and lens thickness (LT) and measurement of axial length (AL) and anterior chamber depth (ACD) by partial coherence laser interferometry. Main Outcome Measures: Baseline and 2-year change in AOD500 and ARA in the right eye. Results: A total of 745 subjects were present for full biometric testing in both 2008 and 2010 (mean age at baseline, 52.2 years; standard deviation [SD], 11.5 years; 53.7% were female). Test completion rates in 2010 varied from 77.3% (AOD500: 576/745) to 100% (AL). Mean AOD500 decreased from 0.25 mm (SD, 0.13 mm) in 2008 to 0.21 mm (SD, 13 mm) in 2010 (difference, -0.04; 95% confidence interval [CI], -0.05 to -0.03). The ARA decreased from 21.5±3.73 10-2 mm2 to 21.0±3.64 10 -2 mm2 (difference, -0.46; 95% CI, -0.52 to -0.41). The decrease in both was most pronounced among younger subjects and those with baseline AOD500 in the widest quartile at baseline. The following baseline variables were significantly associated with a greater 2-year decrease in both AOD500 and ARA: deeper ACD, steeper iris curvature, smaller LV, greater ARA, and greater AOD500. By using simple regression models, we could explain 52% to 58% and 93% of variation in baseline AOD500 and ARA, respectively, but only 27% and 16% of variation in 2-year change in AOD500 and ARA, respectively. Conclusions: Younger persons and those with the least crowded anterior chambers at baseline have the largest 2-year decreases in AOD500 and ARA. The ability to predict change in angle width based on demographic and biometric factors is relatively poor, which may have implications for screening. Financial Disclosure(s): The author(s) have no proprietary or commercial interest in any materials discussed in this article. © 2012 American Academy of Ophthalmology.
Resumo:
PURPOSE: To clarify the risk parameters measured by anterior segment optical coherence tomography (AS-OCT) for elevated intraocular pressures (IOP) provoked by the darkroom test and to provide recommendations for its clinical usage. METHODS: Subjects aged >40 years and whose peripheral anterior chambers were ≤1/4 corneal thickness were recruited. The anterior segment of the eye was imaged in sitting position and under both light and dark conditions and biometry was performed using anterior segment optical coherence tomography. The analyzed parameters were: (1) central anterior chamber depth (ACD); (2) anterior chamber width; (3) pupil diameter; (4) iris curvature; (5) lens thickness; and (6) number of meridians with closed angles (NCA). Then the darkroom test was performed and a positive provocative test result was defined as a rise in IOP ≥8 mm Hg after the test. Statistical analyses included: (1) the difference in parameters between positive and negative eyes; (2) the association between posttest IOP and the parameters; and (3) the difference in parameters between the 2 eyes in subjects with the asymmetric results. RESULTS: A total of 70 subjects were recruited. ACD (P=0.022), NCA in light (P<0.001), and NCA in dark (P<0.001) were different significantly between eyes with positive and negative results. There was a strong association between NCA in dark (r=0.755, P<0.001) and the posttest IOP. Among subjects with asymmetric results between the 2 eyes, the ACD was shallower and the lens thickness was larger in the positive eye. CONCLUSIONS: The posttest IOP is determined by the extent of functionally closed angles in the dark. The test may be useful in the early diagnosis of primary angle closure. At the same time, angle configuration should be evaluated to remove false positive result.