4 resultados para convex subgraphs


Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we consider the secure beamforming design for an underlay cognitive radio multiple-input singleoutput broadcast channel in the presence of multiple passive eavesdroppers. Our goal is to design a jamming noise (JN) transmit strategy to maximize the secrecy rate of the secondary system. By utilizing the zero-forcing method to eliminate the interference caused by JN to the secondary user, we study the joint optimization of the information and JN beamforming for secrecy rate maximization of the secondary system while satisfying all the interference power constraints at the primary users, as well as the per-antenna power constraint at the secondary transmitter. For an optimal beamforming design, the original problem is a nonconvex program, which can be reformulated as a convex program by applying the rank relaxation method. To this end, we prove that the rank relaxation is tight and propose a barrier interior-point method to solve the resulting saddle point problem based on a duality result. To find the global optimal solution, we transform the considered problem into an unconstrained optimization problem. We then employ Broyden-Fletcher-Goldfarb-Shanno (BFGS) method to solve the resulting unconstrained problem which helps reduce the complexity significantly, compared to conventional methods. Simulation results show the fast convergence of the proposed algorithm and substantial performance improvements over existing approaches.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We consider a linear precoder design for an underlay cognitive radio multiple-input multiple-output broadcast channel, where the secondary system consisting of a secondary base-station (BS) and a group of secondary users (SUs) is allowed to share the same spectrum with the primary system. All the transceivers are equipped with multiple antennas, each of which has its own maximum power constraint. Assuming zero-forcing method to eliminate the multiuser interference, we study the sum rate maximization problem for the secondary system subject to both per-antenna power constraints at the secondary BS and the interference power constraints at the primary users. The problem of interest differs from the ones studied previously that often assumed a sum power constraint and/or single antenna employed at either both the primary and secondary receivers or the primary receivers. To develop an efficient numerical algorithm, we first invoke the rank relaxation method to transform the considered problem into a convex-concave problem based on a downlink-uplink result. We then propose a barrier interior-point method to solve the resulting saddle point problem. In particular, in each iteration of the proposed method we find the Newton step by solving a system of discrete-time Sylvester equations, which help reduce the complexity significantly, compared to the conventional method. Simulation results are provided to demonstrate fast convergence and effectiveness of the proposed algorithm. 

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We say that a (countably dimensional) topological vector space X is orbital if there is T∈L(X) and a vector x∈X such that X is the linear span of the orbit {Tnx:n=0,1,…}. We say that X is strongly orbital if, additionally, x can be chosen to be a hypercyclic vector for T. Of course, X can be orbital only if the algebraic dimension of X is finite or infinite countable. We characterize orbital and strongly orbital metrizable locally convex spaces. We also show that every countably dimensional metrizable locally convex space X does not have the invariant subset property. That is, there is T∈L(X) such that every non-zero x∈X is a hypercyclic vector for T. Finally, assuming the Continuum Hypothesis, we construct a complete strongly orbital locally convex space.

As a byproduct of our constructions, we determine the number of isomorphism classes in the set of dense countably dimensional subspaces of any given separable infinite dimensional Fréchet space X. For instance, in X=ℓ2×ω, there are exactly 3 pairwise non-isomorphic (as topological vector spaces) dense countably dimensional subspaces.