3 resultados para compositional models
Resumo:
Community structure depends on both deterministic and stochastic processes. However, patterns of community dissimilarity (e.g. difference in species composition) are difficult to interpret in terms of the relative roles of these processes. Local communities can be more dissimilar (divergence) than, less dissimilar (convergence) than, or as dissimilar as a hypothetical control based on either null or neutral models. However, several mechanisms may result in the same pattern, or act concurrently to generate a pattern, and much research has recently been focusing on unravelling these mechanisms and their relative contributions. Using a simulation approach, we addressed the effect of a complex but realistic spatial structure in the distribution of the niche axis and we analysed patterns of species co-occurrence and beta diversity as measured by dissimilarity indices (e.g. Jaccard index) using either expectations under a null model or neutral dynamics (i.e., based on switching off the niche effect). The strength of niche processes, dispersal, and environmental noise strongly interacted so that niche-driven dynamics may result in local communities that either diverge or converge depending on the combination of these factors. Thus, a fundamental result is that, in real systems, interacting processes of community assembly can be disentangled only by measuring traits such as niche breadth and dispersal. The ability to detect the signal of the niche was also dependent on the spatial resolution of the sampling strategy, which must account for the multiple scale spatial patterns in the niche axis. Notably, some of the patterns we observed correspond to patterns of community dissimilarities previously observed in the field and suggest mechanistic explanations for them or the data required to solve them. Our framework offers a synthesis of the patterns of community dissimilarity produced by the interaction of deterministic and stochastic determinants of community assembly in a spatially explicit and complex context.
Resumo:
In spite of the controversy that they have generated, neutral models provide ecologists with powerful tools for creating dynamic predictions about beta-diversity in ecological communities. Ecologists can achieve an understanding of the assembly rules operating in nature by noting when and how these predictions are met or not met. This is particularly valuable for those groups of organisms that are challenging to study under natural conditions (e.g., bacteria and fungi). Here, we focused on arbuscular mycorrhizal fungal (AMF) communities and performed an extensive literature search that allowed us to synthesize the information in 19 data sets with the minimal requisites for creating a null hypothesis in terms of community dissimilarity expected under neutral dynamics. In order to achieve this task, we calculated the first estimates of neutral parameters for several AMF communities from different ecosystems. Communities were shown either to be consistent with neutrality or to diverge or converge with respect to the levels of compositional dissimilarity expected under neutrality. These data support the hypothesis that divergence occurs in systems where the effect of limited dispersal is overwhelmed by anthropogenic disturbance or extreme biological and environmental heterogeneity, whereas communities converge when systems have the potential for niche divergence within a relatively homogeneous set of environmental conditions. Regarding the study cases that were consistent with neutrality, the sampling designs employed may have covered relatively homogeneous environments in which the effects of dispersal limitation overwhelmed minor differences among AMF taxa that would lead to environmental filtering. Using neutral models we showed for the first time for a soil microbial group the conditions under which different assembly processes may determine different patterns of beta-diversity. Our synthesis is an important step showing how the application of general ecological theories to a model microbial taxon has the potential to shed light on the assembly and ecological dynamics of communities.
Resumo:
Vector Space Models (VSMs) of Semantics are useful tools for exploring the semantics of single words, and the composition of words to make phrasal meaning. While many methods can estimate the meaning (i.e. vector) of a phrase, few do so in an interpretable way. We introduce a new method (CNNSE) that allows word and phrase vectors to adapt to the notion of composition. Our method learns a VSM that is both tailored to support a chosen semantic composition operation, and whose resulting features have an intuitive interpretation. Interpretability allows for the exploration of phrasal semantics, which we leverage to analyze performance on a behavioral task.