2 resultados para color detection


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective
Pedestrian detection under video surveillance systems has always been a hot topic in computer vision research. These systems are widely used in train stations, airports, large commercial plazas, and other public places. However, pedestrian detection remains difficult because of complex backgrounds. Given its development in recent years, the visual attention mechanism has attracted increasing attention in object detection and tracking research, and previous studies have achieved substantial progress and breakthroughs. We propose a novel pedestrian detection method based on the semantic features under the visual attention mechanism.
Method
The proposed semantic feature-based visual attention model is a spatial-temporal model that consists of two parts: the static visual attention model and the motion visual attention model. The static visual attention model in the spatial domain is constructed by combining bottom-up with top-down attention guidance. Based on the characteristics of pedestrians, the bottom-up visual attention model of Itti is improved by intensifying the orientation vectors of elementary visual features to make the visual saliency map suitable for pedestrian detection. In terms of pedestrian attributes, skin color is selected as a semantic feature for pedestrian detection. The regional and Gaussian models are adopted to construct the skin color model. Skin feature-based visual attention guidance is then proposed to complete the top-down process. The bottom-up and top-down visual attentions are linearly combined using the proper weights obtained from experiments to construct the static visual attention model in the spatial domain. The spatial-temporal visual attention model is then constructed via the motion features in the temporal domain. Based on the static visual attention model in the spatial domain, the frame difference method is combined with optical flowing to detect motion vectors. Filtering is applied to process the field of motion vectors. The saliency of motion vectors can be evaluated via motion entropy to make the selected motion feature more suitable for the spatial-temporal visual attention model.
Result
Standard datasets and practical videos are selected for the experiments. The experiments are performed on a MATLAB R2012a platform. The experimental results show that our spatial-temporal visual attention model demonstrates favorable robustness under various scenes, including indoor train station surveillance videos and outdoor scenes with swaying leaves. Our proposed model outperforms the visual attention model of Itti, the graph-based visual saliency model, the phase spectrum of quaternion Fourier transform model, and the motion channel model of Liu in terms of pedestrian detection. The proposed model achieves a 93% accuracy rate on the test video.
Conclusion
This paper proposes a novel pedestrian method based on the visual attention mechanism. A spatial-temporal visual attention model that uses low-level and semantic features is proposed to calculate the saliency map. Based on this model, the pedestrian targets can be detected through focus of attention shifts. The experimental results verify the effectiveness of the proposed attention model for detecting pedestrians.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sensitive detection of pathogens is critical to ensure the safety of food supplies and to prevent bacterial disease infection and outbreak at the first onset. While conventional techniques such as cell culture, ELISA, PCR, etc. have been used as the predominant detection workhorses, they are however limited by either time-consuming procedure, complicated sample pre-treatment, expensive analysis and operation, or inability to be implemented at point-of-care testing. Here, we present our recently developed assay exploiting enzyme-induced aggregation of plasmonic gold nanoparticles (AuNPs) for label-free and ultrasensitive detection of bacterial DNA. In the experiments, AuNPs are first functionalized with specific, single-stranded RNA probes so that they exhibit high stability in solution even under high electrolytic condition thus exhibiting red color. When bacterial DNA is present in a sample, a DNA-RNA heteroduplex will be formed and subsequently prone to the RNase H cleavage on the RNA probe, allowing the DNA to liberate and hybridize with another RNA strand. This continuously happens until all of the RNA strands are cleaved, leaving the nanoparticles ‘unprotected’. The addition of NaCl will cause the ‘unprotected’ nanoparticles to aggregate, initiating a colour change from red to blue. The reaction is performed in a multi-well plate format, and the distinct colour signal can be discriminated by naked eye or simple optical spectroscopy. As a result, bacterial DNA as low as pM could be unambiguously detected, suggesting that the enzyme-induced aggregation of AuNPs assay is very easy to perform and sensitive, it will significantly benefit to development of fast and ultrasensitive methods that can be used for disease detection and diagnosis.