14 resultados para chloroform


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Results from a joint experimental and theoretical study of electron attachment to chloroform (CHCl3) molecules in the gas phase are reported. In an electron swarm study involving a pulsed Townsend technique with equal gas and electron temperatures, accurate attachment rate coefficients were determined over the temperature range 295-373 K; they show an Arrhenius-type rise with increasing temperature, corresponding to an activation energy of 0.11 (1) eV. In a high resolution electron beam experiment involving two versions of the laser photoelectron attachment method, the relative cross section for Cl- formation from CHCl3 over the energy range 0.001-1.25 eV at the gas temperature T-G = 300 K was measured. It exhibits clear downward cusp structure at the threshold for excitation of one quantum of the vibrational symmetric deformation mode nu(3), indicating that this mode is active in the primary attachment process. With reference to our thermal attachment rate coefficient k(T = 300 K) = 3.9(2) x 10(-9) cm(3) s(-1), a new highly resolved absolute attachment cross section for T-G = 300 K was determined. This cross section is extended to higher energies by measurements, carried out with a pulsed electron beam apparatus which also provided new data for the distinctly weaker fragment anions HCl2- and CCl2-. The resulting total absolute cross section for anion formation is used to calculate the dependence of the attachment rate coefficient k(T-e;T-G) on electron temperature T-e over the range 50-15000 K at the fixed gas temperature T-G = 300 K. In addition, we report the dependence of the relative cross section for Cl- formation on gas temperature T-G = 310-435 K). For comparison with the experimental data, R-matrix calculations have been carried out for the dominant anion channel Cl-. The results recover the main experimental observations and predict the dependence of the DEA cross section on the initial vibrational level nu(3) and on the vibrational temperature. Our results are compared with those of previous electron beam and electron swarm experiments.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Proper application of stable isotopes (e. g., delta N-15 and delta C-13) to food web analysis requires an understanding of all nondietary factors that contribute to isotopic variability. Lipid extraction is often used during stable isotope analysis (SIA), because synthesized lipids have a low delta C-13 and can mask the delta C-13 of a consumer's diet. Recent studies indicate that lipid extraction intended to adjust delta C-13 may also cause shifts in delta N-15, but the magnitude of and reasons for the shift are highly uncertain. We examined a large data set (n = 854) for effects of lipid extraction (using Bligh and dyer's [ 1959] chloroform-methanol solvent mixtures) on the delta N-15 of aquatic consumers. We found no effect of chemically extracting lipids on the delta N-15 of whole zooplankton, unionid mussels, and fish liver samples, and found a small increase in fish muscle delta N-15 of similar to 0.4%. We also detected a negative relationship between the shift in delta N-15 following extraction and the C:N ratio in muscle tissue, suggesting that effects of extraction were greater for tissue with lower lipid content. As long as appropriate techniques such as those from Bligh and dyer (1959) are used, effects of lipid extraction on delta N-15 of aquatic consumers need not be a major consideration in the SIA of food webs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In chloroform, [RuCl2(nbd)(py)(2)] (1) (nbd = norbornadiene; py = pyridine) reacts with 1,4-bis(diphenylphosphino)-1,2,3,4-tetramethyl-1,3-butadiene (1,2,3,4-Me-4-NUPHOS) to give the dimer [Ru2Cl3(eta(4)-1,2,3,4-Me-4-NUPHOS)(2)]Cl (2a), whereas, in THF [RuCl2(1,2,3,4-Me-4-NUPHOS)(PY)(2)] (3) is isolated as the sole product of reaction. Compound 2 exists as a 4:1 mixture of two noninterconverting isomers, the major with C, symmetry and the minor with either C, or C-2 symmetry. A single-crystal X-ray analysis of [Ru2Cl3 (eta(4)-1,2,3,4-Me-4-NUPHOS)(2)] [SbF6] (2b), the hexafluoroantimonate salt of 2a, revealed that the diphosphine coordinates in an unusual manner, as a eta(4)-six-electron donor, bonded through both P atoms and one of the double bonds of the butadiene tether. Compounds 2a and 3 react with 1,2-ethylenediamine (en) in THF to afford [RuCl2(1,2,3,4-Me-4-NUPHOS)(en)] (4), which rapidly dissociates a chloride ligand in chloroform to give [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)] [Cl] (5a). Complexes 4 and 5a cleanly and quantitatively interconvert in a solvent-dependent equilibrium, and in THF 5a readily adds chloride to displace the eta(2)-interaction and re-form 4. A single-crystal X-ray structure determination of [RuCl(eta(4)-1,2,3,4-Me-4-NUPHOS)(en)][ClO4] (5b) confirmed that the diphosphine coordinates in an eta(4)-manner as a facial six-electron donor with the eta(2)-coordinated double bond occupying the site trans to chloride. The eta(4)-bonding mode can be readily identified by the unusually high-field chemical shift associated with the phosphorus atom adjacent to the eta(2)-coordinated double bond. Complexes 2a, 2b, 4, and 5a form catalysts that are active for transfer hydrogenation of a range of ketones. In all cases, catalysts formed from precursors 2a and 2b are markedly more active than those formed from 4 and 5a.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The kinetics of the alkaline hydrolysis of trinitrotoluene, TNT, in an aqueous solution is a possible approach to destroying the active agent in unwanted munitions. The kinetics are shown to have a rapid initial step, step A, in which a highly coloured species, X (lambda(max) = 450 nm) is formed via an equilibrium reaction: TNT + OH- double left right arrow X. The bimolecular rate constant for the forward part of this equilibrium process, k(1), is: 0.099 +/- 0.004, 0.32 +/- 0.02 and 1.27 +/- 0.05 dm(3) mol(-1) s(-1), at 25, 40 and 60degreesC, respectively. The activation energy for the forward process is 60 kJ mol(-1). The first-order rate constant for the reverse of this process, k(-1), is: (5.3 +/- 2.6) x 10(-4), (1.2 +/- 1.0) x 10(-3) and (7.7 +/- 2.9) x 10(-3) s(-1) at 25, 40 and 60degreesC, respectively. The activation energy for the overall equilibrium process (k(1)/k(-1)) is ca. -5 kJ mol(-1). The subsequent alkaline hydrolysis of X to form the final product P, i.e. step B, is much slower than step A and appears to comprise two processes coupled in series, i.e. steps B1 (X +2OH(-) --> Z) and B2 (Z+OH- --> P). At 25degreesC, Step B1 appears rate determining throughout the decay process. At 45 degreesC and, more so, at 60degreesC, step B appears increasingly biphasic with increasing alkaline concentrations, as step B2 begins to compete with step B1 for position as the rate determining step. The trimolecular rate constant for step B1 is: 0.017 +/- 0.001, 0.0085 +/- 0.0002 and 0.0011 +/- 0.0001 dm(6) mol(-2) s(-1) at 25, 40 and 60degreesC, respectively, and the process has an activation energy of 64 kJ mol(-1). The transition from uniform kinetics, described by step B1, to mixed kinetics, described by steps B1 and B2, as the reaction temperature and alkali concentration are increased most likely occurs because (a) step B2 has a lower activation energy than B1, although it was not possible to measure the former parameter, and (b) step B2 has a lower (1st) order dependence upon [OH-] compared with that of step B1 (2nd). The bimolecular rate constant for step B2 is 0.0035 +/- 0.03 dm(3) mol(-1) s(-1) at 60degreesC. A brief NMR study of the initial hydrolysis product in water, acetone and chloroform, coupled with UV/visible spectra, provides evidence that species X is a Meisenheimer complex.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The influence of liming on rhizosphere microbial biomass C and incorporation of root exudates was studied in the field by in situ pulse labelling of temperate grassland vegetation with (13)CO(2) for a 3-day period. In plots that had been limed (CaCO(3) amended) annually for 3 years, incorporation into shoots and roots was, respectively, greater and lower than in unlimed plots. Analysis of chloroform-labile C demonstrated lower levels of (13)C incorporation into microbial biomass in limed soils compared to unlimed soils. The turnover of the recently assimilated (13)C compounds was faster in microbial biomass from limed than that from unlimed soils, suggesting that liming increases incorporation by microbial communities of root exudates. An exponential decay model of (13)C in total microbial biomass in limed soils indicated that the half-life of the tracer within this carbon pool was 4.7 days. Results are presented and discussed in relation to the absolute values of (13)C fixed and allocated within the plant-soil system.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In vitro assays are invaluable for the biochemical characterization of UDP-sugar:undecaprenyl-phosphate sugar-1-phosphate transferases. These assays typically involve the use of a radiolabeled substrate and subsequent extraction of the product, which resides in a lipid environment. Here, we describe the preparation of bacterial membranes containing these enzymes, a standard in vitro transferase assay with solvents containing chloroform and methanol, and two methods to measure product formation: scintillation counting and thin layer chromatography.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rod-like micelles, formed from bolaamphiphiles with oligo(ethylene oxide) hydrophilic outer segments and a hydrophobic segment with diacetylene flanked by two urea moieties, were covalently fixated by topochemical photopolymerization to high degrees of polymerization by optimizing the hydrophobic core and the hydrophilic periphery of the bolaamphiphiles. Analysis of the polymerized product with dynamic light scattering in chloroform showed degrees of polymerization of approximately 250. Cryo-TEM of bolaamphiphiles before and after UV irradiation showed that the morphology of the rods was conserved upon topochemical polymerization. © 2014 The Royal Society of Chemistry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ethnopharmacological relevance: The ethnobotanical use of Aframomum melegueta in the treatment of urinary tract and soft tissue infection suggested that the plant has antimicrobial activity.

Materials and methods: To substantiate the folkloric claims, an acetone, 50:50 acetone:methanol and 2:1 chloroform:methanol extracts were tested against Escherichia coli K12; acetone extract and the fractions of acetone extracts were tested against Listeria monocytogenes. Bioassay-guided fractionation was performed on the extract using L. monocytogenes as the test organism to isolate the bioactive compounds which were then tested against all the other organisms.

Results: Four known labdane diterpenes (G3 and G5) were isolated for the first time from the rhizomes of A. melegueta and purified. These were tested against E. coli, L. monocytogenes, methicillin resistant Staphylococus aureus (MRSA) and S. aureus to determine antibacterial activity. The result showed that two compounds G3 and G5 exhibited more potent antibacterial activity compared to the current clinically used antibiotics ampicillin, gentamicin and vancomycin and can be potential antibacterial lead compounds. The structure of the labdane diterpenes were elucidated using nuclear magnetic resonance (NMR) spectroscopy and Mass spectrometry. A possible mode of action of the isolated compound G3 and its potential cytotoxicity towards mammalian cells were also discussed.

Conclusion: The results confirmed the presence of antibacterial compounds in the rhizomes of A. melegueta with a favourable toxicity profile which could be further optimized as antibacterial lead compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Seaweeds are good sources of dietary fibre, which can influence glucose uptake and glycemic control.Objective: To investigate and compare the in vitro inhibitory activity of different extracts from Undaria pinnatifida (Wakame), Himanthalia elongata (Sea spaghetti) and Porphyra umbilicalis (Nori) on α-glucosidase activity and glucose diffusion.Methods: The in vitro effects chloroform-, ethanol- and water-soluble extracts of the three algae were assayed on α- glucosidase activity and glucose diffusion through membrane. Principal Components Analysis (PCA) was applied to identify patterns in the data and to discriminate which extract will show the most proper effect.Results: Only water extracts of Sea spaghetti possessed significant in vitro inhibitory effects on α-glucosidase activity (26.2% less mmol/L glucose production than control, p < 0.05) at 75 min. PCA distinguished Sea spaghetti effects, supporting that soluble fibre and polyphenols were involved. After 6 h, Ethanol-Sea spaghetti and water-Wakame extracts exerted the highest inhibitory effects on glucose diffusion (65.0% and 60.2% vs control, respectively). This extracts displayed the lowest slopes for glucose diffusion-time lineal adjustments (68.2% and 62.8% vs control, respectively).Conclusions: The seaweed hypoglycemic effects appear multi-faceted and not necessarily concatenated. According to present results, ethanol and water extracts of Sea spaghetti, and water extracts of Wakame could be useful for the development of functional foods with specific hypoglycemic properties.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A solvent-vapour thermoplastic bonding process is reported which provides high strength bonding of PMMA over a large area for multi-channel and multi-layer microfluidic devices with shallow high resolution channel features. The bond process utilises a low temperature vacuum thermal fusion step with prior exposure of the substrate to chloroform (CHCl3) vapour to reduce bond temperature to below the PMMA glass transition temperature. Peak tensile and shear bond strengths greater than 3 MPa were achieved for a typical channel depth reduction of 25 µm. The device-equivalent bond performance was evaluated for multiple layers and high resolution channel features using double-side and single-side exposure of the bonding pieces. A single-sided exposure process was achieved which is suited to multi-layer bonding with channel alignment at the expense of greater depth loss and a reduction in peak bond strength. However, leak and burst tests demonstrate bond integrity up to at least 10 bar channel pressure over the full substrate area of 100 mm x 100 mm. The inclusion of metal tracks within the bond resulted in no loss of performance. The vertical wall integrity between channels was found to be compromised by solvent permeation for wall thicknesses of 100 µm which has implications for high resolution serpentine structures. Bond strength is reduced considerably for multi-layer patterned substrates where features on each layer are not aligned, despite the presence of an intermediate blank substrate. Overall a high performance bond process has been developed that has the potential to meet the stringent specifications for lab-on-chip deployment in harsh environmental conditions for applications such as deep ocean profiling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dye-sensitized solar cell (DSSC) is currently a promising technology that makes solar energy efficient and cost-effective to harness. In DSSC, metal free dyes, such indoline-containing D149 and D205, are proved to be potential alternatives for traditional metal organic dyes. In this work, a DFT/TDDFT characterization for D149 and D205 were carried out using different functionals, including B3LYP, MPW1K, CAM-B3LYP and PBE0. Three different conformers for D149 and four different conformers for D205 were identified and calculated in vacuum. The performance of different functionals on calculating the maximum absorbance of the dyes in vacuum and five common solvents (acetonitrile, chloroform, ethanol, methanol, and THF) were examined and compared to determine the suitable computational setting for predicting properties of these two dyes. Furthermore, deprotonated D149 and D205 in solvents were also considered, and the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) were calculated, which elucidates the substitution effect on the rhodanine ring of D149 and D205 dyes on their efficiency. Finally, D149 and D205 molecules were confirmed to be firmly anchored on ZnO surface by periodic DFT calculations. These results would shed light on the design of new highly efficiency metal-free dyes.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7%) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7% - 49.5% identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin and spanins) and shows 29-98% homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60°C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest the AP3 phage is a promising potent agent against bacteria belonging to most common B. cenocepacia IIIA lineage strains.