58 resultados para charge-transfer complex
Resumo:
Liquid charge-transfer (CT) complexes were observed to form on contacting electron-rich aromatics with electron withdrawing group appended 1-alkyl-4-cyanopyridinium ionic liquids (ILs). Cooling below the melting point of the ionic liquid resulted in crystallisation of ionic liquid from the complex for 2-cyano and 3-cyano pyridinium isomers and in the formation of a 1 : 1 IL : aromatic crystalline CT-complex with the 4-cyanopyridinium isomer. The liquid structure of a 1 : 1 mixture of 1-methyl-4-cyanopyridinium bis{(trifluoromethyl)sulfonyl} imide with 1-methylnaphthalene has been probed by neutron diffraction experiments and molecular dynamics simulations. A high degree of correlation between the experimental data and the simulations was found with a significant displacement of the anions from around the cation by the aromatic species and the resulting structure having pi-pi stacks between the cations and the aromatic.
Resumo:
Ultracold hybrid ion–atom traps offer the possibility of microscopic manipulation of quantum coherences in the gas using the ion as a probe. However, inelastic processes, particularly charge transfer can be a significant process of ion loss and has been measured experimentally for the ${\rm Y}{{{\rm b}}^{+}}$ ion immersed in a Rb vapour. We use first-principles quantum chemistry codes to obtain the potential energy curves and dipole moments for the lowest-lying energy states of this complex. Calculations for the radiative decay processes cross sections and rate coefficients are presented for the total decay processes; ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm Yb}(6{{{\rm s}}^{2}}{{\;}^{1}}{\rm S})+{\rm R}{{{\rm b}}^{+}}(4{{{\rm p}}^{6}}{{\;}^{1}}{\rm S})+h\nu $ and ${\rm Y}{{{\rm b}}^{+}}(6{\rm s}{{\;}^{2}}{\rm S})+{\rm Rb}(5{\rm s}{{\;}^{2}}{\rm S})\to {\rm YbR}{{{\rm b}}^{+}}({{X}^{1}}{{\Sigma }^{+}})+h\nu $. Comparing the semi-classical Langevin approximation with the quantum approach, we find it provides a very good estimate of the background at higher energies. The results demonstrate that radiative decay mechanisms are important over the energy and temperature region considered. In fact, the Langevin process of ion–atom collisions dominates cold ion–atom collisions. For spin-dependent processes [1] the anisotropic magnetic dipole–dipole interaction and the second-order spin–orbit coupling can play important roles, inducing coupling between the spin and the orbital motion. They measured the spin-relaxing collision rate to be approximately five orders of magnitude higher than the charge-exchange collision rate [1]. Regarding the measured radiative charge transfer collision rate, we find that our calculation is in very good agreement with experiment and with previous calculations. Nonetheless, we find no broad resonances features that might underly a strong isotope effect. In conclusion, we find, in agreement with previous theory that the isotope anomaly observed in experiment remains an open question.
Resumo:
Integrated "ICT chromophore-receptor" systems show ion-induced shifts in their electronic absorption spectra. The wavelength of observation can be used to reversibly configure the system to any of the four logic operations permissible with a single input (YES, NOT, PASS 1, PASS 0), under conditions of ion input and transmittance output. We demonstrate these with dyes integrated into Tsien's calcium receptor, 1-2. Applying multiple ion inputs to 1-2 also allows us to perform two- or three-input OR or NOR operations. The weak fluorescence output of 1 also shows YES or NOT logic depending on how it is configured by excitation and emission wavelengths. Integrated "receptor(1)-ICT chromophore-receptor(2)" systems 3-5 selectively target two ions into the receptor terminals. The ion-induced transmittance output of 3-5 can also be configured via wavelength to illustrate several logic types including, most importantly, XOR. The opposite effects of the two ions on the energy of the chromophore excited state is responsible for this behaviour. INHIBIT and REVERSE IMPLICATION are two of the other logic types seen here. Integration of XOR logic with a preceding OR operation can be arranged by using three ion inputs. The fluorescence output of these systems can be configured via wavelength to display INHIBIT or NOR logic under two-input conditions. The superposition or multiplicity of logic gate configurations is an unusual consequence of the ability to simultaneously observe multiple wavelengths.
Resumo:
The effects of linear scaling of the atomic charges of a reference potential on the structure, dynamics, and energetics of the ionic liquid 1,3-dimethylimidazolium chloride are investigated. Diffusion coefficients that span over four orders of magnitude are observed between the original model and a scaled model in which the ionic charges are +/- 0.5 e. While the three-dimensional structure of the liquid is less affected, the partial radial distribution functions change markedly-with the positive result that for ionic charges of +/- 0.7 e, an excellent agreement is observed with ab initio molecular dynamics data. Cohesive energy densities calculated from these partial-charge models are also in better agreement with those calculated from the ab initio data. We postulate that ionic-liquid models in which the ionic charges are assumed to be +/- 1 e overestimate the intermolecular attractions between ions, which results in overstructuring, slow dynamics, and increased cohesive energy densities. The use of scaled-charge sets may be of benefit in the simulation of these systems-especially when looking at properties beyond liquid structure-thus providing on alternative to computationally expensive polarisable force fields.
Resumo:
Nanosecond time-resolved absorption (TA), resonance Raman (TR(3)), and infrared (TRIR) spectra are reported for several complexes [Ru(X)(R)(CO)(2)(alpha-diimine)] (X = Cl, Br, I; R = Me, Et; alpha-diimine = N,N'-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB), pyridine-2-carbaldehyde-N-isopropylimine (iPr-PyCa), 2,2'-bipyridine (bpy)). This is the first instance in which the TA, TR(3), and TRIR techniques have been used to probe excited states in the same series of complexes. The TA spectra of the iodide complexes show a transient absorption between 550 and 700 nm, which does not depend on the solvent but shifts to lower energy in the order iPr-DAB > bpy > iPr-PyCa. This band is assigned to an intraligand transition. For the corresponding chloride and bromide complexes this band occurs at higher energy, most probably because of a change of character of the lowest excited state from XLCT to MLCT. The TRIR spectra show an increase in v(CO) (and k(CO)) on promotion to the excited state; however, the shifts Delta v(CO) show a decrease in the order Cl- > Br- > I-. The TR(3) spectra of the excited complexes [Ru(X)(R)(Co)(2)(iPr-DAB)] show v(s)(CN) of the iPr-DAB ligand 50-80 cm(-1) lower in frequency than for the complexes in their ground state. This frequency shift decreases in the order Cl- > Br- > I-, indicating a decrease of CT character of the lowest excited state in this order. However, going from X = Br to I, the effect on Delta v(CO) is much larger than the decrease of Delta v(s)(CN). This different effect on the CO- and CN-stretching frequencies is assigned to a gradual change in character of the lowest excited state from MLCT to XLCT when Cl- is replaced by Br- and I-. This result confirms a similar conclusion derived from previous resonance Raman and emission experiments on these complexes.
ABSORPTION-SPECTRA AND DYNAMICS OF CHARGE-TRANSFER EXCITED-STATES OF COPPER(I) COMPLEXES IN SOLUTION
Resumo:
Charge transfer is a subfemtosecond process in molecules that creates chemical and electronic structure changes. At the quantum level the process can be coherently controlled by ultrashort light pulses. We show how the charge transfer process can be manipulated using a combination of dynamic and static fields and predict how this can be observed experimentally by imaging with photoionization.
Resumo:
We study the charge transfer between colliding ions, atoms, or molecules, within time-dependent density functional theory. Two particular cases are presented, the collision between a proton and a Helium atom, and between a gold atom and a butane molecule. In the first case, proton kinetic energies between 16 keV and 1.2 MeV are considered, with impact parameters between 0.31 and 1.9 angstrom. The partial transfer of charge is monitored with time. The total cross-section is obtained as a function of the proton kinetic energy. In the second case, we analyze one trajectory and discuss spin-dependent charge transfer between the different fragments.
Resumo:
The role of sodium surface species in the modification of a platinum (Pt) catalyst film supported on 8 mol% yttria-stabilised-zirconia (YSZ) was investigated under a flow of 20 kPa oxygen at 400 °C. Cyclic and linear sweep voltammetry were used to investigate the kinetics of the oxygen charge transfer reaction. The Pt/YSZ systems of both ‘clean’ and variable-coverage sodium-modified catalyst surfaces were also characterised using SEM, XPS and work function measurements using the Kelvin probe technique.
Samples with sodium coverage from 0.5 to 100% were used. It was found that sodium addition modifies the binding energy of oxygen onto the catalyst surface. Cyclic voltammetry experiments showed that higher overpotentials were required for oxygen reduction with increasing sodium coverage. In addition, sodium was found to modify oxygen storage and/or adsorption and diffusion increasing current densities at higher cathodic overpotential. Ex situ XPS measurements showed the presence of sodium hydroxide, carbonate and/or oxide species on the catalyst surface, while the Kelvin probe technique showed a decrease of approximately 250 meV in the work function of samples with more than 50% sodium coverage (compared to a nominally ‘clean’ sample).