59 resultados para catalysis reaction
Resumo:
We have performed density functional theory calculations with the generalized gradient approximation to investigate CO oxidation on a close-packed transition metal surface, Pd(lll), and a more open surface, Pd(100), aiming to shed light on surface structure effects on reaction pathways and reactivity, an important issue in catalysis. Reaction pathways on both surfaces at two different coverages have been studied. It is found that the reaction pathways on both surfaces possess crucial common features despite the fact that they have different surface symmetries. Having determined reaction barriers in these systems, we find that the reaction on Pd(lll) is strongly coverage dependent. Surface coverages, however, have little effect on the reaction on Pd(100). Calculations also reveal that the low coverage reactions are structure sensitive while the medium coverage reactions are not. Detailed discussions on these results are given.
Resumo:
Nitrogen-doped graphene (N-graphene) was reported to exhibit a good activity experimentally as an electrocatalyst of oxygen reduction reaction (ORR) on the cathode of fuel cells under the condition of electropotential of similar to 0.04 V (vs. NNE) and pH of 14. This material is promising to replace or partially replace the conventionally used Pt. In order to understand the experimental results. ORR catalyzed by N-graphene is studied using density functional theory (DFT) calculations under experimental conditions taking the solvent, surface adsorbates, and coverages into consideration. Two mechanisms, i.e., dissociative and associative mechanisms, over different N-doping configurations are investigated. The results show that N-graphene surface is covered by O with 1/6 monolayer, which is used for reactions in this work. The transition state of each elementary step was identified using four different approaches, which give rise to a similar chemistry. A full energy profile including all the reaction barriers shows that the associative mechanism is more energetically favored than the dissociative one and the removal of O species from the surface is the rate-determining step. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Dry reforming is a promising reaction to utilise the greenhouse gases CO2 and CH4. Nickel-based catalysts are the most popular catalysts for the reaction, and the coke formation on the catalysts is the main obstacle to the commercialisation of dry reforming. In this study, the whole reaction network of dry reformation on both flat and stepped nickel catalysts (Ni(111) and Ni(211)) as well as nickel carbide (flat: Ni3C(001); stepped: Ni3C(111)) is investigated using density functional theory calculations. The overall reaction energy profiles in the free energy landscape are obtained, and kinetic analyses are utilised to evaluate the activity of the four surfaces. By careful examination of our results, we find the following regarding the activity: (i) flat surfaces are more active than stepped surfaces for the dry reforming and (ii) metallic nickel catalysts are more active than those of nickel carbide, and therefore, the phase transformation from nickel to nickel carbide will reduce the activity. With respect to the coke formation, the following is found: (i) the coke formation probability can be measured by the rate ratio of CH oxidation pathway to C oxidation pathway (r(CH)/r(C)) and the barrier of CO dissociation, (ii) on Ni(111), the coke is unlikely to form, and (iii) the coke formations on the stepped surfaces of both nickel and nickel carbide can readily occur. A deactivation scheme, using which experimental results can be rationalised, is proposed.
Resumo:
Lewis acid complexes based on copper(II) and an imidazolium-tagged bis(oxazoline) have been used to catalyse the asymmetric Mukaiyama aldol reaction between methyl pyruvate and 1-methoxy-1-tri-methylsilyloxypropene under homogeneous and heterogeneous conditions. Although the ees obtained in ionic liquid were similar to those found in dichloromethane, there was a significant rate enhancement in the ionic liquid with reactions typically reaching completion within 2 min compared with only 55% conversion after 60 min in dichloromethane. However, this rate enhancement was offset by lower chemoselectivity in ionic liquids due to the formation of 3-hydroxy-1,3-diphenylbutan-1-one as a by-product. Supporting the catalyst on silica or an imidazolium-modified silica using the ionic liquid or in an ionic liquid-diethyl ether system completely suppressed the formation of this by-product without reducing the enantioselectivity. Although the heterogeneous systems were characterised by a drop in catalytic activity the system could be recycled up to five times without any loss in conversion or ee.
Resumo:
LL catalytic RNAs (ribozymes) require or are stimulated by divalent metal ions, but it has been difficult to separate the contribution of these metal ions to formation of the RNA tertiary structure1 from a more direct role in catalysis. The Tetrahymena ribozyme catalyses cleavage of exogenous RNA2,3 or DNA4,5 substrates with an absolute requirement for Mg2+ or Mn2+ (ref. 6). A DNA substrate, in which the bridging 3' oxygen atom at the cleavage site is replaced by sulphur, is cleaved by the ribozyme about 1,000 times more slowly than the corresponding unmodified DNA substrate when Mg2+ is present as the only divalent metal ion. But addition of Mn2+ or Zn2+ to the reaction relieves this negative effect, with the 3' S–P bond being cleaved nearly as fast as the 3' O–P bond. Considering that Mn2+ and Zn2+ coordinate sulphur more strongly than Mg2+ does7,8, these results indicate that the metal ion contributes directly to catalysis by coordination to the 3' oxygen atom in the transition state, presumably stabilizing the developing negative charge on the leaving group. We conclude that the Tetrahymena ribozyme is a metalloenzyme, with mechanistic similarities to several protein enzymes9–12.
Resumo:
A dual chamber membrane reactor was used in order to study the effect of macroscopically applied oxygen chemical potential differences to a platinum catalyst supported on a mixed oxygen ion and electronic conducting membrane. It is believed that the oxygen chemical potential difference imposed by the use of an oxygen sweep in one of the reactor chambers causes the back-spillover of oxygen species from the support onto the catalyst surface, resulting in the modification of the catalytic activity. The use of different sweep gases, such as ethylene and hydrogen was investigated as the means to reverse the rate modification by removing the spilt over species from the catalyst surface and returning the system to its initial state. Oxygen sweep in general had a positive effect on the reaction rate with rate increases up to 20% measured. Experimental results showed that hydrogen is a more potent sweep gas than ethylene in terms of the ability to reverse rate modification. A 10% rate loss was observed when using an ethylene sweep as compared with an almost 60% rate decrease when hydrogen was used as the sweep gas. © 2009 Elsevier Ltd. All rights reserved.
Resumo:
Solving microkinetics of catalytic systems, which bridges microscopic processes and macroscopic reaction rates, is currently vital for understanding catalysis in silico. However, traditional microkinetic solvers possess several drawbacks that make the process slow and unreliable for complicated catalytic systems. In this paper, a new approach, the so-called reversibility iteration method (RIM), is developed to solve microkinetics for catalytic systems. Using the chemical potential notation we previously proposed to simplify the kinetic framework, the catalytic systems can be analytically illustrated to be logically equivalent to the electric circuit, and the reaction rate and coverage can be calculated by updating the values of reversibilities. Compared to the traditional modified Newton iteration method (NIM), our method is not sensitive to the initial guess of the solution and typically requires fewer iteration steps. Moreover, the method does not require arbitrary-precision arithmetic and has a higher probability of successfully solving the system. These features make it ∼1000 times faster than the modified Newton iteration method for the systems we tested. Moreover, the derived concept and the mathematical framework presented in this work may provide new insight into catalytic reaction networks.
Resumo:
To predict where a catalytic reaction should occur is a fundamental issue scientifically. Technologically, it is also important because it can facilitate the catalyst's design. However, to date, the understanding of this issue is rather limited. In this work, two types of reactions, CH4 CH3 + H and CO C + 0 on two transition metal surfaces, were chosen as model systems aiming to address in general where a catalytic reaction should occur. The dissociations of CH4 - CH3 + H and CO --> C + O and their reverse reactions on flat, stepped, and kinked Rh and Pd surfaces were studied in detail. We find the following: First, for the CH4 Ch(3) + H reaction, the dissociation barrier is reduced by similar to0.3 eV on steps and kinks as compared to that on flat surfaces. On the other hand, there is essentially no difference in barrier for the association reaction of CH3 + H on the flat surfaces and the defects. Second, for the CO C + 0 reaction, the dissociation barrier decreases dramatically (more than 0.8 eV on Rh and Pd) on steps and kinks as compared to that on flat surfaces. In contrast to the CH3 + H reaction, the C + 0 association reaction also preferentially occurs on steps and kinks. We also present a detailed analysis of the reaction barriers in which each barrier is decomposed quantitatively into a local electronic effect and a geometrical effect. Our DFT calculations show that surface defects such as steps and kinks can largely facilitate bond breaking, while whether the surface defects could promote bond formation depends on the individual reaction as well as the particular metal. The physical origin of these trends is identified and discussed. On the basis of our results, we arrive at some simple rules with respect to where a reaction should occur: (i) defects such as steps are always favored for dissociation reactions as compared to flat surfaces; and (ii) the reaction site of the association reactions is largely related to the magnitude of the bonding competition effect, which is determined by the reactant and metal valency. Reactions with high valency reactants are more likely to occur on defects (more structure-sensitive), as compared to reactions with low valency reactants. Moreover, the reactions on late transition metals are more likely to proceed on defects than those on the early transition metals.
Resumo:
The reactivity of the species formed at the surface of a Au/Ce(La)O2 catalyst during the water������¢���¯���¿���½���¯���¿���½gas shift (WGS) reaction were investigated by operando diffuse reflectance Fourier transform spectroscopy (DRIFTS) at the chemical steady state during isotopic transient kinetic analyses (SSITKA). The exchanges of the reaction product CO2 and of formate and carbonate surface species were followed during an isotopic exchange of the reactant CO using a DRIFTS cell as a single reactor. The DRIFTS cell was a modified commercial cell that yielded identical reaction rates to that measured over a quartz plug-flow reactor. The DRIFTS signal was used to quantify the relative oncentrations of the surface species and CO2. The analysis of the formate exchange curves between 428 and 493 K showed that at least two levels of reactivity were present. ������¢���¯���¿���½���¯���¿���½Slow formates������¢���¯���¿���½���¯���¿���½ displayed an exchange rate constant 10- to 20-fold slower than that of the reaction product CO2. ������¢���¯���¿���½���¯���¿���½Fast formates������¢���¯���¿���½���¯���¿���½ were exchanged on a time scale similar to that of CO2. Multiple nonreactive readsorption of CO2 took place, accounting for the kinetics of the exchange of CO2(g) and making it impossible to determine the number of active sites through the SSITKA technique. The concentration (in mol g������¢���¯���¿���½���¯���¿���½1) of formates on the catalyst was determined through a calibration curve and allowed calculation of the specific rate of formate decomposition. The rate of CO2 formation was more than an order of magnitude higher than the rate of decomposition of formates (slow + fast species), indicating that all of the formates detected by DRIFTS could not be the main reaction intermediates in the production of CO2. This work stresses the importance of full quantitative analyses (measuring both rate constants and adsorbate concentrations) when investigating the role of adsorbates as potential reaction intermediates, and illustrates how even reactive species seen by DRIFTS may be unimportant in the overall reaction scheme.