3 resultados para catalizzatori strutturati elettrosintesi metalli nobili nanoparticelle schiume metalliche
Resumo:
We present early-time optical and near-infrared photometry of supernova (SN) 2005cf. The observations, spanning a period from about 12 d before to 3 months after maximum, have been obtained through the coordination of observational efforts of various nodes of the European Supernova Collaboration and including data obtained at the 2-m Himalayan Chandra Telescope. From the observed light curve we deduce that SN 2005cf is a fairly typical SN Ia with a post-maximum decline [Delta m(15)(B)(true) = 1.12] close to the average value and a normal luminosity of M-B,M-max = -19.39 +/- 0.33. Models of the bolometric light curve suggest a synthesized Ni-56 mass of about 0.7 M-circle dot. The negligible host galaxy interstellar extinction and its proximity make SN 2005cf a good Type Ia SN template.
Resumo:
Aims. We present a study of the optical and near-infrared (NIR) properties of the Type Ia Supernova (SNIa) 2003du.
Resumo:
Evidence of high-velocity features (HVFs) such as those seen in the near-maximum spectra of some Type Ia supernovae (SNe Ia; e. g., SN 2000cx) has been searched for in the available SN Ia spectra observed earlier than 1 week before B maximum. Recent observational efforts have doubled the number of SNe Ia with very early spectra. Remarkably, all SNe Ia with early data ( seven in our Research Training Network sample and 10 from other programs) show signs of such features, to a greater or lesser degree, in Ca II IR and some also in the Si II lambda 6355 line. HVFs may be interpreted as abundance or density enhancements. Abundance enhancements would imply an outer region dominated by Si and Ca. Density enhancements may result from the sweeping up of circumstellar material (CSM) by the highest velocity SN ejecta. In this scenario, the high incidence of HVFs suggests that a thick disk and/or a high-density companion wind surrounds the exploding white dwarf, as may be the case in single degenerate systems. Large-scale angular fluctuations in the radial density and abundance distribution may also be responsible: this could originate in the explosion and would suggest a deflagration as the more likely explosion mechanism. CSM interaction and surface fluctuations may coexist, possibly leaving different signatures on the spectrum. In some SNe, the HVFs are narrowly confined in velocity, suggesting the ejection of blobs of burned material.