3 resultados para carrier systems
Resumo:
We propose cyclic prefix single carrier full-duplex transmission in amplify-and-forward cooperative spectrum sharing networks to achieve multipath diversity and full-duplex spectral efficiency. Integrating full-duplex transmission into cooperative spectrum sharing systems results in two intrinsic problems: 1) the residual loop interference occurs between the transmit and the receive antennas at the secondary relays and 2) the primary users simultaneously suffer interference from the secondary source (SS) and the secondary relays (SRs). Thus, examining the effects of residual loop interference under peak interference power constraint at the primary users and maximum transmit power constraints at the SS and the SRs is a particularly challenging problem in frequency selective fading channels. To do so, we derive and quantitatively compare the lower bounds on the outage probability and the corresponding asymptotic outage probability for max–min relay selection, partial relay selection, and maximum interference relay selection policies in frequency selective fading channels. To facilitate comparison, we provide the corresponding analysis for half-duplex. Our results show two complementary regions, named as the signal-to-noise ratio (SNR) dominant region and the residual loop interference dominant region, where the multipath diversity and spatial diversity can be achievable only in the SNR dominant region, however the diversity gain collapses to zero in the residual loop interference dominant region.
Resumo:
Peptides are receiving increasing interest as clinical therapeutics. These highly tunable molecules can be tailored to biocompatibility and biodegradability with simultaneously selective and potent therapeutic effects. Despite challenges regarding up-scaling and licensing of peptide products, their vast clinical potential is reflected in the 60 plus peptide-based therapeutics already on the market, and the further 500 derivatives currently in developmental stages. Peptides are proving effective for a multitude of disease states including: type 2 diabetes (controlled using the licensed glucagon-like peptide-1 receptor liraglutide); irritable bowel syndrome managed with linaclotide (currently at approval stages); acromegaly (treated with octapeptide somostatin analogues lanreotide and octreotide); selective or broad spectrum microbicidal agents such as the Gram-positive selective PTP-7 and antifungal heliomicin; anticancer agents including goserelin used as either adjuvant or for prostate and breast cancer,and the first marketed peptide derived vaccine against prostate cancer, sipuleucel-T. Research is also focusing on improving the biostability of peptides. This is achieved through a number of mechanisms ranging from replacement of naturally occurring L-amino acid enantiomers with D-amino acid forms, lipidation, peptidomimetics, N-methylation, cyclization and exploitation of carrier systems. The development of self-assembling peptides are paving the way for sustained release peptide formulations and already two such licensed examples exist, lanreotide and octreotide. The versatility and tunability of peptide-based products is resulting in increased translation of peptide therapies, however significant challenges remain with regard to their wider implementation. This review highlights some of the notable peptide therapeutics discovered to date and the difficulties encountered by the pharmaceutica lindustry in translating these molecules to the clinical setting for patient benefit, providing some possible solutions to the most challenging barriers.
Resumo:
The Mitochondrial Carrier Family (MCF) is a signature group of integral membrane proteins that transport metabolites across the mitochondrial inner membrane in eukaryotes. MCF proteins are characterized by six transmembrane segments that assemble to form a highly-selective channel for metabolite transport. We discovered a novel MCF member, termed Legionellanucleotide carrier Protein (LncP), encoded in the genome of Legionella pneumophila, the causative agent of Legionnaire's disease. LncP was secreted via the bacterial Dot/Icm type IV secretion system into macrophages and assembled in the mitochondrial inner membrane. In a yeast cellular system, LncP induced a dominant-negative phenotype that was rescued by deleting an endogenous ATP carrier. Substrate transport studies on purified LncP reconstituted in liposomes revealed that it catalyzes unidirectional transport and exchange of ATP transport across membranes, thereby supporting a role for LncP as an ATP transporter. A hidden Markov model revealed further MCF proteins in the intracellular pathogens, Legionella longbeachae and Neorickettsia sennetsu, thereby challenging the notion that MCF proteins exist exclusively in eukaryotic organisms.