2 resultados para carbazoles


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The carbazole moiety is a component of many important pharmaceuticals including anticancer and anti-HIV agents and is commonly utilized in the production of modern polymeric materials with novel photophysical and electronic properties. Simple carbazoles are generally produced via the aromatization of the respective tetrahydrocarbazole (THCZ). In this work, density functional theory calculations are used to model the reaction pathway of tetrahydrocarbazole aromatization over Pd(111). The geometry of each of the intermediate surface species has been determined and how each structure interacts with the metal surface addressed. The reaction energies and barriers of each of the elementary surface reactions have also been calculated, and a detailed analysis of the energetic trends performed. Our calculations have shown that the surface intermediates remain fixed to the surface via the aromatic ring in a manner similar to that of THCZ. Moreover, the aliphatic ring becomes progressively more planer with the dissociation of each subsequent hydrogen atom. Analysis of the reaction energy profile has revealed that the trend in reaction barriers is determined by the two factors: (i) the strength of the dissociating ring-H bond and (ii) the subsequent gain in energy due to the geometric relaxation of the aliphatic ring. (c) 2008 American Institute of Physics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Overexpression of the Bcl-2 proto-oncogene in tumor cells confers resistance against chemotherapeutic drugs. In this study, we describe how the novel pyrrolo-1,5-benzoxazepine compound 7-[[dimethylcarbamoyl]oxy]-6-(2-naphthyl)pyrrolo-[2,1-d] (1,5)-benzoxazepine (PBOX-6) selectively induces apoptosis in Bcl-2-overexpressing cancer cells, whereas it shows no cytotoxic effect on normal peripheral blood mononuclear cells. PBOX-6 overcomes Bcl-2-mediated resistance to apoptosis in chronic myelogenous leukemia (CML) K562 cells by the time- and dose-dependent phosphorylation and inactivation of antiapoptotic Bcl-2 family members Bcl-2 and Bcl-XL. PBOX-6 also induces Bcl-2 phosphorylation and apoptosis in wild-type T leukemia CEM cells and cells overexpressing Bcl-2. This is in contrast to chemotherapeutic agents such as etoposide, actinomycin D, and ultraviolet irradiation, whereby overexpression of Bcl-2 confers resistance against apoptosis. In addition, PBOX-6 induces Bcl-2 phosphorylation and apoptosis in wild-type Jurkat acute lymphoblastic leukemia cells and cells overexpressing Bcl-2. However, Jurkat cells containing a Bcl-2 triple mutant, whereby the principal Bcl-2 phosphorylation sites are mutated to alanine, demonstrate resistance against Bcl-2 phosphorylation and apoptosis. PBOX-6 also induces the early and transient activation of c-Jun NH2-terminal kinase (JNK) in CEM cells. Inhibition of JNK activity prevents Bcl-2 phosphorylation and apoptosis, implicating JNK in the upstream signaling pathway leading to Bcl-2 phosphorylation. Collectively, these findings identify Bcl-2 phosphorylation and inactivation as a critical step in the apoptotic pathway induced by PBOX-6 and highlight its potential as an effective antileukemic agent.