59 resultados para calcium channel L type
T- and L-type Ca2+ currents in freshly dispersed smooth muscle cells from the human proximal urethra
Resumo:
The purpose of the present study was to characterise Ca2+ currents in smooth muscle cells isolated from biopsy samples taken from the proximal urethra of patients undergoing surgery for bladder or prostate cancer. Cells were studied at 37 degreesC using the amphotericin B perforated-patch configuration of the patch-clamp technique. Currents were recorded using Cs+-rich pipette solutions to block K+ currents. Two components of current, with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents, were present in these cells. When steady-state inactivation curves for the L current were fitted with a Boltzmann equation, this yielded a V-1/2 of -45 +/- 5 mV. In contrast, the T current inactivated with a V-1/2 of -80 +/- 3 mV. The L currents were reduced in a concentration-dependent manner by nifedipine (ED50 = 159 +/- 54 nm) and Ni2+ (ED50 = 65 +/- 16 muM) but were enhanced when external Ca2+ was substituted with Ba2+. The T current was little affected by TTX, reduction in external Na+, application of nifedipine at concentrations below 300 nm or substitution of external Ca2+ with Ba2+, but was reduced by Ni2+ with an ED50 of 6 +/- 1 mum. When cells were stepped from -100 to -30 mV in Ca2+-free conditions, small inward currents could be detected. These were enhanced 40-fold in divalent-cation-free solution and blocked in a concentration-dependent manner by Mg2+ with an ED50 of 32 +/- 16 mum. These data support the idea that human urethral myocytes possess currents with electrophysiological and pharmacological properties typical of T- and L-type Ca2+ currents.
Resumo:
BACKGROUND: Vascular dementia is the second most common cause of dementia affecting over seven million people worldwide, yet there are no licensed treatments. There is an urgent need for a clinical trial in this patient group. Subcortical ischaemic vascular dementia is the most common variant of vascular dementia. This randomised trial will investigate whether use of calcium channel blockade with amlodipine, a commonly used agent, can provide the first evidence-based pharmacological treatment for subcortical ischaemic vascular dementia.
METHODS/DESIGN: This is a randomised controlled trial of calcium channel blockade with Amlodipine For the treatment oF subcortical ischaEmic vasCular demenTia (AFFECT) to test the hypothesis that treatment with amlodipine can improve outcomes for these patients in a phase IIb, multi-centre, double-blind, placebo-controlled randomised trial. The primary outcome is the change from baseline to 12 months in the Vascular Dementia Assessment Scale cognitive subscale (VADAS-cog). Secondary outcomes include cognitive function, executive function, clinical global impression of change, change in blood pressure, quantitative evaluation of lesion accrual based on magnetic resonance imaging (MRI), health-related quality of life, activities of daily living, non-cognitive dementia symptoms, care-giver burden and care-giver health-related quality of life, cost-effectiveness and institutionalisation. A total of 588 patients will be randomised in a 1:1 ratio to either amlodipine or placebo, recruited from sites across the UK and enrolled in the trial for 104 weeks.
DISCUSSION: There are no treatments licensed for vascular dementia. The most common subtype is subcortical ischaemic vascular dementia (SIVD). This study is designed to investigate whether amlodipine can produce benefits compared to placebo in established SIVD. It is estimated that the numbers of people with VaD and SIVD will increase globally in the future and the results of this study should inform important treatment decisions.
Resumo:
BACKGROUND: Calcium channel blockers (CCBs) may affect prostate cancer (PCa) growth by various mechanisms including those related to androgens. The fusion of the androgen-regulated gene TMPRSS2 and the oncogene ERG (TMPRSS2:ERG or T2E) is common in PCa, and prostate tumors that harbor the gene fusion are believed to represent a distinct disease subtype. We studied the association of CCB use with the risk of PCa, and molecular subtypes of PCa defined by T2E status.
METHODS: Participants were residents of King County, Washington, recruited for population-based case-control studies (1993-1996 or 2002-2005). Tumor T2E status was determined by fluorescence in situ hybridization using tumor tissue specimens from radical prostatectomy. Detailed information on use of CCBs and other variables was obtained through in-person interviews. Binomial and polytomous logistic regression were used to generate odds ratios (ORs) and 95% confidence intervals (CIs).
RESULTS: The study included 1,747 PCa patients and 1,635 age-matched controls. A subset of 563 patients treated with radical prostatectomy had T2E status determined, of which 295 were T2E positive (52%). Use of CCBs (ever vs. never) was not associated with overall PCa risk. However, among European-American men, users had a reduced risk of higher-grade PCa (Gleason scores ≥7: adjusted OR = 0.64; 95% CI: 0.44-0.95). Further, use of CCBs was associated with a reduced risk of T2E positive PCa (adjusted OR = 0.38; 95% CI: 0.19-0.78), but was not associated with T2E negative PCa.
CONCLUSIONS: This study found suggestive evidence that use of CCBs is associated with reduced relative risks for higher Gleason score and T2E positive PCa. Future studies of PCa etiology should consider etiologic heterogeneity as PCa subtypes may develop through different causal pathways.
Resumo:
The purpose of this study was to determine whether the prevalence and severity of gingival overgrowth in renal transplant recipients concomitantly treated with cyclosporin and a calcium channel blocker was associated with functional polymorphisms within the signal sequence of the transforming growth factor-(TGF)beta1 gene.
Resumo:
Background/aims, To investigate whether the choice of calcium channel blocker, used in conjunction with cyclosporin A, affected the prevalence of gingival overgrowth.
Resumo:
This study assessed the contribution of L-type Ca2+ channels and other Ca2+ entry pathways to Ca2+ store refilling in choroidal arteriolar smooth muscle. Voltage-clamp recordings were made from enzymatically isolated choroidal microvascular smooth muscle cells and from cells within vessel fragments (containing <10 cells) using the whole-cell perforated patch-clamp technique. Cell Ca2+ was estimated by fura-2 microfluorimetry. After Ca2+ store depletion with caffeine (10 mM), refilling was slower in cells held at -20 mV compared to -80 mV (refilling half-time was 38 +/- 10 and 20 +/- 6 s, respectively). To attempt faster refilling via L-type Ca2+ channels, depolarising steps from -60 to -20 mV were applied during a 30 s refilling period following caffeine depletion. Each step activated L-type Ca2+ currents and [Ca2+]i transients, but failed to accelerate refilling. At -80 mV and in 20 mM TEA, prolonged caffeine exposure produced a transient Ca2+-activated Cl- current (I(Cl)(Ca)) followed by a smaller sustained current. The sustained current was resistant to anthracene-9-carboxylic acid (1 mM; an I(Cl)(Ca) blocker) and to BAPTA AM, but was abolished by 1 microM nifedipine. This nifedipine-sensitive current reversed at +29 +/- 2 mV, which shifted to +7 +/- 5 mV in Ca2+-free solution. Cyclopiazonic acid (20 microM; an inhibitor of sarcoplasmic reticulum Ca2+-ATPase) also activated the nifedipine-sensitive sustained current. At -80 mV, a 5 s caffeine exposure emptied Ca2+ stores and elicited a transient I(Cl)(Ca). After 80 s refilling, another caffeine challenge produced a similar inward current. Nifedipine (1 microM) during refilling reduced the caffeine-activated I(Cl)(Ca) by 38 +/- 5 %. The effect was concentration dependent (1-3000 nM, EC50 64 nM). In Ca2+-free solution, store refilling was similarly depressed (by 46 +/- 6 %). Endothelin-1 (10 nM) applied at -80 mV increased [Ca2+]i, which subsided to a sustained 198 +/- 28 nM above basal. Cell Ca2+ was then lowered by 1 microM nifedipine (to 135 +/- 22 nM), which reversed on washout. These results show that L-type Ca2+ channels fail to contribute to Ca2+ store refilling in choroidal arteriolar smooth muscle. Instead, they refill via a novel non-selective store-operated cation conductance that is blocked by nifedipine.