34 resultados para bone defect
Resumo:
Mesenchymal stem cells (MSCs) were demonstrated to exist within peripheral blood (PB) of several mammalian species including human, guinea pig, mice, rat, and rabbit. Whether or not the PB derived MSCs (PBMSCs) could enhance the regeneration of large bone defects have not been reported. In this study, rabbit MSCs were obtained from mononuclear cells (MNCs) cultures of both the PB and bone marrow (BM) origin. The number of PBMSCs was relatively lower, with the colony forming efficiency (CFE) ranging from 1.2-13 per million MNCs. Under specific inductive conditions, PBMSCs differentiated into osteoblasts, chondrocytes, and adipocytes, showing multi- differentiation ability similar to BMMSCs. Bilateral 20 mm critical-sized bone defects were created in the ulnae of twelve 6-month old New Zealand white rabbits. The defects were treated with allogenic PBMSCs/Skelite (porous calcium phosphate resorbable substitute), BMMSCs/Skelite, PBMNCs/Skelite, Skelite alone and left empty for 12 weeks. Bone regeneration was evaluated by serial radiography, peripheral quantitative computed tomography (pQCT), and histological examinations. The x-ray scores and the pQCT total bone mineral density in the PBMSCs/Skelite and BMMSCs/Skelite treated groups were significantly greater than those of the PBMNCs/Skelite and Skelite alone groups (p
Resumo:
To obtain enough quantity of osteogenic cells is a challenge for successful cell therapy in bone defect treatment, and cell numbers were usually achieved by culturing bone marrow cells in a relatively long duration. This study reported a simple and cost effective method to enhance the number of MSCs by collecting and replating the non-adherent cell population of marrow MSCs culture. Bone marrow MSCs were isolated from 11 patients, cultured at a density of 1×105/cm2 to 1×106/cm2 in flasks. For the first three times of media change, the floating cells were centrifuged and replated in separate flasks. The total number of cells in both the primary and replating flasks were counted at day 21. Cell proliferation rate, potentials for osteogenic, chondrognenic, and adipogenic differentiation were examined in both cell types in vitro. In-vivo osteogenic potentials of the cells were also tested in mice implantation model. The results showed that MSCs derived from non-adherent cell population of marrow cell cultures have similar cell proliferation and differentiation potentials as the originally attached MSCs in vitro. When implanted with HA-TCP materials subcutaneously in SCID mice, newly formed bony tissues were found in both cell type groups with osteocalcin expression. We have obtained 36.6% (20.70%-44.97%) more MSCs in the same culture period when the non-adherent cell populations were collected. The findings confirmed that the non-adherent cell population in the bone marrow culture is a complementary source of MSCs, collecting these cells is a simple and cost-effective way to increase MSCs numbers and reduce the time required for culturing MSCs for clinical applications.
Resumo:
Biomaterials include bioceramics, biometals, biopolymers and biocomposites and they play important roles in the replacement and regeneration of human tissues. However, dense bioceramics and dense biometals pose the problem of stress shielding due to their high Young's moduli compared to those of bones. On the other hand, porous biomaterials exhibit the potential of bone ingrowth, which will depend on porous parameters such as pore size, pore interconnectivity, and porosity. Unfortunately, a highly porous biomaterial results in poor mechanical properties. To optimise the mechanical and the biological properties, porous biomaterials with graded/gradient porosity, pores size, and/or composition have been developed. Graded/gradient porous biomaterials have many advantages over graded/gradient dense biomaterials and uniform or homogenous porous biomaterials. The internal pore surfaces of graded/gradient porous biomaterials can be modified with organic, inorganic, or biological coatings and the internal pores themselves can also be filled with biocompatible and biodegradable materials or living cells. However, graded/gradient porous biomaterials are generally more difficult to fabricate than uniform or homogenous porous biomaterials. With the development of cost-effective processing techniques, graded/gradient porous biomaterials can find wide applications in bone defect filling, implant fixation, bone replacement, drug delivery, and tissue engineering.
Resumo:
Experimental use of statins as stimulators of bone formation suggests they may have widespread applicability in the field of orthopaedics. With their combined effects on osteoblasts and osteoclasts, statins have the potential to enhance resorption of synthetic materials and improve bone ingrowth. In this study, the effect of oral and local administration of simvastatin to a 0 tricalcium phosphate (beta TCP)-filled defect around an implant was compared with recombinant human bone morphogenetic protein 2 (rhBMP2). On hundred and sixty-two Sprague-Dawley rats were assigned to treatment groups: local application of 0.1, 0.9 or 1.7 mg of simvastatin, oral simvastatin at 5, 10 or 50 mg kg(-1) day(-1) for 20 days, local delivery of I or 10 mu g of rhBMP2, or control. At 6 weeks rhBMP2 increased serum tartrate-resistant acid phosphatase 5b levels and reduced PTCP area fraction, particle size and number compared with control, suggesting increased osteoclast activity. There was reduced stiffness and increased mechanical strength with this treatment. Local simvastatin resulted in a decreased mineral apposition rate at 6 weeks and increased fibrous area fraction, PTCP area fraction, particle size and number at 26 weeks. Oral simvastatin had no effect compared with control. Local application of rhBMP2 increased resorption and improved mechanical strength whereas simvastatin was detrimental to healing. Oral simvastatin was ineffective at promoting either ceramic resorption or bone formation. The effect of statins on the repair of bone defects with graft substitute materials is influenced by its bioavailability. Thus, further studies on the optimal delivery system are needed. (C) 2007 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
Resumo:
Currently available synthetic bone substitutes perform poorly compared to autograft. It is hoped that by adding osteogenic growth factors to the materials, new bone formation could be increased and the clinical outcome improved. In this study, IGF-1, bFGF and TGFbeta1, alone and in combination, were absorbed onto a carrier of P-tricalcium phosphate (PTCP) and implanted into a defect around a hydroxyapatite-coated, stainless steel implant in the proximal tibia of rat in a model of revision arthroplasty. Animals were sacrificed at 6 and 26 weeks for routine histology and histomorphometry and mechanical push out tests. The results show that only bFGF had a significant effect on ceramic resorption. The groups that received bFGF and bFGF in combination with TGFbeta1 had smaller and fewer betaTCP particles remaining in the defect at 6 and 26 weeks. No growth factor combination significantly enhanced new bone formation or the mechanical strength of the implant. These results indicate that, of the growth factors tested, only bFGF had any beneficial effect on the host response to the implant, perhaps by delaying osteoblast differentiation and thereby prolonging osteoclast access to the ceramic. (C) 2004 Orthopaedic Research Society. Published by Elsevier Ltd. All rights reserved.
Resumo:
Synthetic bone substitutes provide an alternative to autograft but do not give equivalent clinical results. Their performance may be enhanced by adding osteogenic growth factors. In this study, TGFbeta1 was absorbed on to a carrier of 0 tricalcium phosphate and Gelfoam(R) and used to fill a defect around a tibial implant in a rat model of revision arthoplasty.
Resumo:
Aging results in deterioration of the immune system, which is associated with increased susceptibility to infection and impaired wound healing in the elderly. Phagocytosis is an essential process in both wound healing and immune defence. As such, age-related impairments in phagocytosis impact on the health of the elderly population. Phagocytic efficiency in peritoneal macrophages, bone marrow-derived macrophages and bone marrow monocytes from young and old mice was investigated. Aging significantly impaired phagocytosis by peritoneal macrophages, both in vitro and in vivo. However, bone marrow-derived macrophages and bone marrow monocytes did not exhibit age-related impairments in phagocytosis, suggesting no intrinsic defect in these cells. We sought to investigate underlying mechanisms in age-related impairments in phagocytosis by peritoneal macrophages. We hypothesized that microenvironmental factors in the peritoneum of old mice impaired macrophage phagocytosis. Indeed, macrophages from young mice injected into the peritoneum of old mice exhibited impaired phagocytosis. Proportions of peritoneal immune cells were characterized, and striking increases in numbers of T cells, B1 and B2 cells were observed in the peritoneum of old mice compared with young mice. In addition, B cell-derived IL-10 was increased in resting and LPS-activated peritoneal cell cultures from old mice. These data demonstrate that aging impairs phagocytosis by tissue-resident peritoneal macrophages, but not by bone marrow-derived macrophages/monocytes, and suggest that age-related defects in macrophage phagocytosis may be due to extrinsic factors in the tissue microenvironment. As such, defects may be reversible and macrophages could be targeted therapeutically in order to boost immune function in the elderly.
Resumo:
Allogeneic blood or bone marrow transplantation is a successful treatment for leukaemia and severe aplastic anaemia (SAA). Graft rejection following transplantation for leukaemia is a rare event but leukaemic relapse may occur at varying rates, depending upon the stage of leukaemia at which the transplant was undertaken and the type of leukaemia. Relapse is generally assumed to occur in residual host cells, which are refractory to, or escape from the myeloablative conditioning therapy. Rare cases have been described, however, in which the leukaemia recurs in cells of donor origin. Lack of a successful outcome of blood or bone marrow transplantation for severe aplastic anaemia (SAA), however, is due to late graft rejection or graft-versus-host disease. Leukaemia in cells of donor origin has rarely been reported in patients following allogeneic bone marrow transplantation for SAA. This report describes leukaemic transformation in donor cells following a second allogeneic BMT for severe aplastic anaemia. PCR of short tandem repeats in bone marrow aspirates and in colonies derived from BFUE and CFU-GM indicated the donor origin of leukaemia. Donor leukaemia is a rare event following transplantation for severe aplastic anaemia but may represent the persistence or perturbation of a stromal defect in these patients inducing leukaemic change in donor haemopoietic stem cells.