109 resultados para biomimetic pattern recognition


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the results of an experimental investigation, carried out in order to verify the feasibility of a ‘drive-by’ approach which uses a vehicle instrumented with accelerometers to detect and locate damage in a bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform and damage indicators are evaluated and compared. Alternative statistical pattern recognition techniques are incorporated to allow for repeated vehicle passes. Parameters such as vehicle speed, damage level, location and road roughness are varied in simulations to investigate the effect. A scaled laboratory experiment is carried out to assess the effectiveness of the approach in a more realistic environment, considering a number of bridge damage scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In recent years, there has been a move towards the development of indirect structural health monitoring (SHM)techniques for bridges; the low-cost vibration-based method presented in this paper is such an approach. It consists of the use of a moving vehicle fitted with accelerometers on its axles and incorporates wavelet analysis and statistical pattern recognition. The aim of the approach is to both detect and locate damage in bridges while reducing the need for direct instrumentation of the bridge. In theoretical simulations, a simplified vehicle-bridge interaction model is used to investigate the effectiveness of the approach in detecting damage in a bridge from vehicle accelerations. For this purpose, the accelerations are processed using a continuous wavelet transform as when the axle passes over a damaged section, any discontinuity in the signal would affect the wavelet coefficients. Based on these coefficients, a damage indicator is formulated which can distinguish between different damage levels. However, it is found to be difficult to quantify damage of varying levels when the vehicle’s transverse position is varied between bridge crossings. In a real bridge field experiment, damage was applied artificially to a steel truss bridge to test the effectiveness of the indirect approach in practice; for this purpose a two-axle van was driven across the bridge at constant speed. Both bridge and vehicle acceleration measurements were recorded. The dynamic properties of the test vehicle were identified initially via free vibration tests. It was found that the resulting damage indicators for the bridge and vehicle showed similar patterns, however, it was difficult to distinguish between different artificial damage scenarios.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In order to address road safety effectively, it is essential to understand all the factors, which
attribute to the occurrence of a road collision. This is achieved through road safety
assessment measures, which are primarily based on historical crash data. Recent advances
in uncertain reasoning technology have led to the development of robust machine learning
techniques, which are suitable for investigating road traffic collision data. These techniques
include supervised learning (e.g. SVM) and unsupervised learning (e.g. Cluster Analysis).
This study extends upon previous research work, carried out in Coll et al. [3], which
proposed a non-linear aggregation framework for identifying temporal and spatial hotspots.
The results from Coll et al. [3] identified Lisburn area as the hotspot, in terms of road safety,
in Northern Ireland. This study aims to use Cluster Analysis, to investigate and highlight any
hidden patterns associated with collisions that occurred in Lisburn area, which in turn, will
provide more clarity in the causation factors so that appropriate countermeasures can be put
in place.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Face recognition with unknown, partial distortion and occlusion is a practical problem, and has a wide range of applications, including security and multimedia information retrieval. The authors present a new approach to face recognition subject to unknown, partial distortion and occlusion. The new approach is based on a probabilistic decision-based neural network, enhanced by a statistical method called the posterior union model (PUM). PUM is an approach for ignoring severely mismatched local features and focusing the recognition mainly on the reliable local features. It thereby improves the robustness while assuming no prior information about the corruption. We call the new approach the posterior union decision-based neural network (PUDBNN). The new PUDBNN model has been evaluated on three face image databases (XM2VTS, AT&T and AR) using testing images subjected to various types of simulated and realistic partial distortion and occlusion. The new system has been compared to other approaches and has demonstrated improved performance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this paper, a novel pattern recognition scheme, global harmonic subspace analysis (GHSA), is developed for face recognition. In the proposed scheme, global harmonic features are extracted at the semantic scale to capture the 2-D semantic spatial structures of a face image. Laplacian Eigenmap is applied to discriminate faces in their global harmonic subspace. Experimental results on the Yale and PIE face databases show that the proposed GHSA scheme achieves an improvement in face recognition accuracy when compared with conventional subspace approaches, and a further investigation shows that the proposed GHSA scheme has impressive robustness to noise.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This study investigates face recognition with partial occlusion, illumination variation and their combination, assuming no prior information about the mismatch, and limited training data for each person. The authors extend their previous posterior union model (PUM) to give a new method capable of dealing with all these problems. PUM is an approach for selecting the optimal local image features for recognition to improve robustness to partial occlusion. The extension is in two stages. First, authors extend PUM from a probability-based formulation to a similarity-based formulation, so that it operates with as little as one single training sample to offer robustness to partial occlusion. Second, they extend this new formulation to make it robust to illumination variation, and to combined illumination variation and partial occlusion, by a novel combination of multicondition relighting and optimal feature selection. To evaluate the new methods, a number of databases with various simulated and realistic occlusion/illumination mismatches have been used. The results have demonstrated the improved robustness of the new methods.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Gabor features have been recognized as one of the most successful face representations. Encouraged by the results given by this approach, other kind of facial representations based on Steerable Gaussian first order kernels and Harris corner detector are proposed in this paper. In order to reduce the high dimensional feature space, PCA and LDA techniques are employed. Once the features have been extracted, AdaBoost learning algorithm is used to select and combine the most representative features. The experimental results on XM2VTS database show an encouraging recognition rate, showing an important improvement with respect to face descriptors only based on Gabor filters.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

This paper presents a novel method that leverages reasoning capabilities in a computer vision system dedicated to human action recognition. The proposed methodology is decomposed into two stages. First, a machine learning based algorithm - known as bag of words - gives a first estimate of action classification from video sequences, by performing an image feature analysis. Those results are afterward passed to a common-sense reasoning system, which analyses, selects and corrects the initial estimation yielded by the machine learning algorithm. This second stage resorts to the knowledge implicit in the rationality that motivates human behaviour. Experiments are performed in realistic conditions, where poor recognition rates by the machine learning techniques are significantly improved by the second stage in which common-sense knowledge and reasoning capabilities have been leveraged. This demonstrates the value of integrating common-sense capabilities into a computer vision pipeline. © 2012 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Recent work suggests that the human ear varies significantly between different subjects and can be used for identification. In principle, therefore, using ears in addition to the face within a recognition system could improve accuracy and robustness, particularly for non-frontal views. The paper describes work that investigates this hypothesis using an approach based on the construction of a 3D morphable model of the head and ear. One issue with creating a model that includes the ear is that existing training datasets contain noise and partial occlusion. Rather than exclude these regions manually, a classifier has been developed which automates this process. When combined with a robust registration algorithm the resulting system enables full head morphable models to be constructed efficiently using less constrained datasets. The algorithm has been evaluated using registration consistency, model coverage and minimalism metrics, which together demonstrate the accuracy of the approach. To make it easier to build on this work, the source code has been made available online.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Social signals and interpretation of carried information is of high importance in Human Computer Interaction. Often used for affect recognition, the cues within these signals are displayed in various modalities. Fusion of multi-modal signals is a natural and interesting way to improve automatic classification of emotions transported in social signals. Throughout most present studies, uni-modal affect recognition as well as multi-modal fusion, decisions are forced for fixed annotation segments across all modalities. In this paper, we investigate the less prevalent approach of event driven fusion, which indirectly accumulates asynchronous events in all modalities for final predictions. We present a fusion approach, handling short-timed events in a vector space, which is of special interest for real-time applications. We compare results of segmentation based uni-modal classification and fusion schemes to the event driven fusion approach. The evaluation is carried out via detection of enjoyment-episodes within the audiovisual Belfast Story-Telling Corpus.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Burkholderia cenocepacia causes opportunistic infections in plants, insects, animals, and humans, suggesting that “virulence” depends on the host and its innate susceptibility to infection. We hypothesized that modifications in key bacterial molecules recognized by the innate immune system modulate host responses to B. cenocepacia. Indeed, modification of lipo- polysaccharide (LPS) with 4-amino-4-deoxy-L-arabinose and flagellin glycosylation attenuates B. cenocepacia infection in Arabi- dopsis thaliana and Galleria mellonella insect larvae. However, B. cenocepacia LPS and flagellin triggered rapid bursts of nitric oxide and reactive oxygen species in A. thaliana leading to activation of the PR-1 defense gene. These responses were drastically reduced in plants with fls2 (flagellin FLS2 host receptor kinase), Atnoa1 (nitric oxide-associated protein 1), and dnd1-1 (reduced production of nitric oxide) null mutations. Together, our results indicate that LPS modification and flagellin glycosylation do not affect recognition by plant receptors but are required for bacteria to establish overt infection.