42 resultados para biological tissue testing


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The measurement of neuropeptides in complex biological tissue samples requires efficient and appropriate extraction methods so that immunoreactivity is retained for subsequent radioimmunoassay detection. Since neuropeptides differ in their molecular mass, charge and hydrophobicity, no single method will suffice for the optimal extraction of various neuropeptides. In this study, dental pulp tissue was obtained from 30 human non-carious teeth. Of the three different neuropeptide extraction methods employed, boiling in acetic acid in the presence of protease inhibitors yielded the highest levels of neuropeptide Y (NPY) and vasoactive intestinal polypeptide (VIP). High pressure liquid chromatography (HPLC) analysis of dental pulp tissue verified the authenticity of the neuropeptides extracted. © 2003 Elsevier Science Ltd. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Preclinical toxicity testing in animal models is a cornerstone of the drug development process, yet it is often unable to predict adverse effects and tolerability issues in human subjects. Species-specific responses to investigational drugs have led researchers to utilize human tissues and cells to better estimate human toxicity. Unfortunately, human cell-derived models are imperfect because toxicity is assessed in isolation, removed from the normal physiologic microenvironment. Microphysiological modeling often referred to as 'organ-on-a-chip' or 'human-on-a-chip' places human tissue into a microfluidic system that mimics the complexity of human in vivo physiology, thereby allowing for toxicity testing on several cell types, tissues, and organs within a more biologically relevant environment. Here we describe important concepts when developing a repro-on-a-chip model. The development of female and male reproductive microfluidic systems is critical to sex-based in vitro toxicity and drug testing. This review addresses the biological and physiological aspects of the male and female reproductive systems in vivo and what should be considered when designing a microphysiological human-on-a-chip model. Additionally, interactions between the reproductive tract and other systems are explored, focusing on the impact of factors and hormones produced by the reproductive tract and disease pathophysiology.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Microneedles (MNs) are emerging devices that can be used for the delivery of drugs at specific locations1. Their performance is primarily judged by different features and the penetration through tissue is one of the most important aspects to evaluate. For detailed studies of MN performance different kind of in-vitro, exvivo and in-vivo tests should be performed. The main limitation of some of these tests is that biological tissue is too heterogeneous, unstable and difficult to obtain. In addition the use of biological materials sometimes present legal issues. There are many studies dealing with artificial membranes for drug diffusion2, but studies of artificial membranes for Microneedle mechanical characterization are scarce3. In order to overcome these limitations we have developed tests using synthetic polymeric membranes instead of biological tissue. The selected artificial membrane is homogeneous, stable, and readily available. This material is mainly composed of a roughly equal blend of a hydrocarbon wax and a polyolefin and it is commercially available under the brand name Parafilm®. The insertion of different kind of MN arrays prepared from crosslinked polymers were performed using this membrane and correlated with the insertion of the MN arrays in ex-vivo neonatal porcine skin. The insertion depth of the MNs was evaluated using Optical coherence tomography (OCT). The implementation of MN transdermal patches in the market can be improved by make this product user-friendly and easy to use. Therefore, manual insertion is preferred to other kind of procedures. Consequently, the insertion studies were performed in neonatal porcine skin and the artificial membrane using a manual insertion force applied by human volunteers. The insertion studies using manual forces correlated very well with the same studies performed with a Texture Analyzer equipment. These synthetic membranes seem to mimic closely the mechanical properties of the skin for the insertion of MNs using different methods of insertion. In conclusion, this artificial membrane substrate offers a valid alternative to biological tissue for the testing of MN insertion and can be a good candidate for developing a reliable quality control MN insertion test.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A commercial polymeric film (Parafilm M (R), a blend of a hydrocarbon wax and a polyolefin) was evaluated as a model membrane for microneedle (MN) insertion studies. Polymeric MN arrays were inserted into Parafilm M (R) (PF) and also into excised neonatal porcine skin. Parafilm M (R) was folded before the insertions to closely approximate thickness of the excised skin. Insertion depths were evaluated using optical coherence tomography (OCT) using either a force applied by a Texture Analyser or by a group of human volunteers. The obtained insertion depths were, in general, slightly lower, especially for higher forces, for PF than for skin. However, this difference was not a large, being less than the 10% of the needle length. Therefore, all these data indicate that this model membrane could be a good alternative to biological tissue for MN insertion studies. As an alternative method to OCT, light microscopy was used to evaluate the insertion depths of MN in the model membrane. This provided a rapid, simple method to compare different MN formulations. The use of Parafilm M (R), in conjunction with a standardised force/time profile applied by a Texture Analyser, could provide the basis for a rapid MN quality control test suitable for in-process use. It could also be used as a comparative test of insertion efficiency between candidate MN formulations. 

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Immunomagnetic separation (IMS) can selectively isolate and concentrate Mycobacterium bovis cells from lymph node tissue to facilitate subsequent detection by PCR (IMS-PCR) or culture (IMS-MGIT). This study describes application of these novel IMS-based methods to test for M. bovis in a survey of 280 bovine lymph nodes (206 visibly lesioned (VL), 74 non-visibly lesioned (NVL)) collected at slaughter as part of the Northern Ireland bovine TB eradication programme. Their performance was evaluated relative to culture. Overall, 174 (62.1%) lymph node samples tested positive by culture, 162 (57.8%) by IMS-PCR (targeting IS6110), and 196 (70.0%) by IMS-MGIT culture. Twelve (6.9%) of the 174 culture positive lymph node samples were not detected by either of the IMS-based methods. However, an additional 78 M. bovis positive lymph node samples (26 (12.6%) VL and 54 (73.0%) NVL) were detected by the IMS-based methods and not by culture. When low numbers of viable M. bovis are present in lymph nodes (e.g. in NVLs of skin test reactor cattle) decontamination prior to culture may adversely affect viability, leading to false negative culture results. In contrast, IMS specifically captures whole M. bovis cells (live, dead or potentially dormant) which are not subject to any deleterious treatment before detection by PCR or MGIT culture. During this study only 2.7% of NVL lymph nodes tested culture positive, whereas 73% of the same samples tested M. bovis positive by the IMS-based tests. Results clearly demonstrate that not only are the IMS-based methods more rapid but they have greater detection sensitivity than the culture approach currently used for the detection of M. bovis infection in cattle.. Adoption of the IMS-based methods for lymph node testing would have the potential to improve M. bovis detection in clinical samples.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Using genome-wide data from 253,288 individuals, we identified 697 variants at genome-wide significance that together explained one-fifth of the heritability for adult height. By testing different numbers of variants in independent studies, we show that the most strongly associated 1/42,000, 1/43,700 and 1/49,500 SNPs explained 1/421%, 1/424% and 1/429% of phenotypic variance. Furthermore, all common variants together captured 60% of heritability. The 697 variants clustered in 423 loci were enriched for genes, pathways and tissue types known to be involved in growth and together implicated genes and pathways not highlighted in earlier efforts, such as signaling by fibroblast growth factors, WNT/I 2-catenin and chondroitin sulfate-related genes. We identified several genes and pathways not previously connected with human skeletal growth, including mTOR, osteoglycin and binding of hyaluronic acid. Our results indicate a genetic architecture for human height that is characterized by a very large but finite number (thousands) of causal variants.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Analysis of colorectal carcinoma (CRC) tissue for KRAS codon 12 or 13 mutations to guide use of anti-epidermal growth factor receptor (EGFR) therapy is now considered mandatory in the UK. The scope of this practice has been recently extended because of data indicating that NRAS mutations and additional KRAS mutations also predict for poor response to anti-EGFR therapy. The following document provides guidance on RAS (i.e., KRAS and NRAS) testing of CRC tissue in the setting of personalised medicine within the UK and particularly within the NHS. This guidance covers issues related to case selection, preanalytical aspects, analysis and interpretation of such RAS testing.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha-tocopherol (aT), the predominant form of vitamin E in mammals, is thought to prevent oxidation of polyunsaturated fatty acids. In the lung, aT is perceived to be accumulated in alveolar type II cells and secreted together with surfactant into the epithelial lining fluid. Conventionally, determination of aT and related compounds requires extraction with organic solvents. This study describes a new method to determine and image the distribution of aT and related compounds within cells and tissue sections using the light-scattering technique of Raman microscopy to enable high spatial as well as spectral resolution. This study compared the nondestructive analysis by Raman microscopy of vitamin E, in particular aT, in biological samples with data obtained using conventional HPLC analysis. Raman spectra were acquired at spatial resolutions of 2-0.8 microm. Multivariate analysis techniques were used for analyses and construction of corresponding maps showing the distribution of aT, alpha-tocopherol quinone (aTQ), and other constituents (hemes, proteins, DNA, and surfactant lipids). A combination of images enabled identification of colocalized constituents (heme/aTQ and aT/surfactant lipids). Our data demonstrate the ability of Raman microscopy to discriminate between different tocopherols and oxidation products in biological specimens without sample destruction. By enabling the visualization of lipid-protein interactions, Raman microscopy offers a novel method of investigating biological characterization of lipid-soluble compounds, including those that may be embedded in biological membranes such as aT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Replication of the ~30-kb plus-strand RNA genome of coronaviruses and synthesis of an extensive set of subgenome-length RNAs are mediated by the replicase-transcriptase, a membrane-bound protein complex containing several cellular proteins and up to 16 viral nonstructural proteins (nsps) with multiple enzymatic activities, including protease, polymerase, helicase, methyltransferase, and RNase activities. To get further insight into the replicase gene-encoded functions, we characterized the coronavirus X domain, which is part of nsp3 and has been predicted to be an ADP-ribose-1"-monophosphate (Appr-1"-p) processing enzyme. Bacterially expressed forms of human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome-coronavirus X domains were shown to dephosphorylate Appr-1"-p, a side product of cellular tRNA splicing, to ADP-ribose in a highly specific manner. The enzyme had no detectable activity on several other nucleoside phosphates. Guided by the crystal structure of AF1521, an X domain homolog from Archaeoglobus fulgidus, potential active-site residues of the HCoV-229E X domain were targeted by site-directed mutagenesis. The data suggest that the HCoV-229E replicase polyprotein residues, Asn 1302, Asn 1305, His 1310, Gly 1312, and Gly 1313, are part of the enzyme's active site. Characterization of an Appr-1"-pase-deficient HCoV-229E mutant revealed no significant effects on viral RNA synthesis and virus titer, and no reversion to the wild-type sequence was observed when the mutant virus was passaged in cell culture. The apparent dispensability of the conserved X domain activity in vitro indicates that coronavirus replicase polyproteins have evolved to include nonessential functions. The biological significance of the novel enzymatic activity in vivo remains to be investigated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: In vitro release testing of vaginal formulations is usually performed in a one-compartment model (OCM) where the release medium, usually comprising pH-adjusted water, an aqueous surfactant solution or a solvent-water solution, provides sink conditions throughout the release experiment. Although this model is useful in evaluating the effect of formulation parameters upon release, it rarely reflects in vivo conditions. Here we report use of a two-compartment diffusion cell model (TCM, comprising a small volume donor, a large volume receptor, and separated by a model epithelial membrane) to more closely mimic in vivo vaginal release and tissue absorption following administration of a UC781 vaginal ring.

METHODS: Macaque-sized matrix silicone elastomer vaginal rings containing 100mg UC781 were prepared by injection molding, and in vitro release testing performed using both OCM (20mL simulated vaginal fluid, SVF) and TCM (5mL SVF in donor cell and variable quantities of Tween 80; silicone elastomer membrane; 100mL 3:2 ethanol/water in receptor cell). In the TCM, drug levels were measured by HPLC in both donor and receptor cells, representing fluid and tissue levels respectively. Rings containing 100mg UC781 and 10% w/w Tween 80 were also manufactured and tested.

RESULTS: The amount of UC781 released from rings was significantly influenced by the choice of release model. Greatest release (56mg/14 days) was measured in the ethanol/water OCM, compared with no measurable release into SVF only. Increasing the concentration of Tween 80 in the SVF medium (1, 3 and 5% w/w) led to increased UC781 release (11, 16 and 18mg, respectively), demonstrating that vaginal fluid solubility of UC781 may be rate-determining in vivo. In the TCM, UC781 accumulates in the receptor cell medium over time, despite not being measured in the donor medium containing the ring device. Incorporation of Tween 80 directly into the ring provided enhanced release in both donor and receptor cells.

CONCLUSIONS: Release of UC781 was influenced by the choice of release medium and the inclusion of Tween 80 in the ring. Although use of SVF-only in the OCM indicated no measurable UC781 release from rings, data from the TCM confirms that UC781 is not only released but is also capable of penetrating across the model epithelial membrane. The TCM may therefore provide a more representative in vitro release model for mimicking in vivo absorption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The biological role of steroid 5 alpha-reductase isozymes (encoded by the SRD5A1 and SRD5A2 genes) and angiogenic factors that play important roles in the pathogenesis and vascularization of prostate cancer (PC) is poorly understood. The sub-cellular expression of these isozymes and vascular endothelial growth factor (VEGF) in PC tissue microarrays (n=62) was examined using immunohistochemistry. The effect of SRD5A inhibition on the angiogenesis pathway genes in PC was also examined in prostate cell lines, LNCaP, PC3, and RWPE-1, by treating them with the SRD5A inhibitors finasteride and dutasteride, followed by western blot, quantitative PCR, and ELISA chip array techniques. In PC tissues, nuclear SRD5A1 expression was strongly associated with higher cancer Gleason scores (P=0.02), higher cancer stage (P=0.01), and higher serum prostate specific antigen (PSA) levels (P=0.01), whereas nuclear SRD5A2 expression was correlated with VEGF expression (P=0.01). Prostate tumor cell viability was significantly reduced in dutasteride-treated PC3 and RWPE-1 cells compared with finasteride-treated groups. Expression of the angiogenesis pathway genes transforming growth factor beta 1 (TGFB1), endothelin (EDN1), TGF alpha (TGFA), and VEGFR1 was upregulated in LNCaP cells, and at least 7 out of 21 genes were upregulated in PC3 cells treated with finasteride (25 mu M). Our findings suggest that SRD5A1 expression predominates in advanced PC, and that inhibition of SRD5A1 and SRD5A2 together was more effective in reducing cell numbers than inhibition of SRD5A2 alone. However, these inhibitors did not show any significant difference in prostate cell angiogenic response. Interestingly, some angiogenic genes remained activated after treatment, possibly due to the duration of treatment and tumor resistance to inhibitors. Endocrine-Related Cancer (2010) 17 757-770