18 resultados para biological control


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Agricultural intensification can affect biodiversity and related ecosystem services such as biological control, but large-scale experimental evidence is missing. We examined aphid pest populations in cereal fields under experimentally reduced densities of (1) ground-dwelling predators (-G), (2) vegetation-dwelling predators and parasitoids (-V), (3) a combination of (1) and (2) (-G-V),compared with open-fields (control), in contrasting landscapes with low vs. high levels of agricultural intensification (AI), and in five European regions. Aphid populations were 28%, 97%, and 199% higher in -G, -V, and -G -V treatments, respectively, compared to the open fields, indicating synergistic effects of both natural-enemy groups. Enhanced parasitoid : host and predator : prey ratios were related to reduced aphid population density and population growth. The relative importance of parasitoids and vegetation-dwelling predators greatly differed among European regions, and agricultural intensification affected biological control and aphid density only in some regions. This shows a changing role of species group identity in diverse enemy communities and a need to consider region-specific landscape management.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During the last 50 years, agricultural intensification has caused many wild plant and animal species to go extinct regionally or nationally and has profoundly changed the functioning of agro-ecosystems. Agricultural intensification has many components, such as loss of landscape elements, enlarged farm and field sizes and larger inputs of fertilizer and pesticides. However, very little is known about the relative contribution of these variables to the large-scale negative effects on biodiversity. In this study, we disentangled the impacts of various components of agricultural intensification on species diversity of wild plants, carabids and ground-nesting farmland birds and on the biological control of aphids.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Novel egg-laying boards were found to be effective in the biological control of the freshwater fish louse Argulus foliaceus in a 12.9 ha rainbow trout Oncorhynchus mykiss fishery which had a high prevalence and intensity of infection of juvenile parasites in the early spring of 1999. Approximately 228 000d during an extensive 14 week period of egg laying which peaked in June 1999. In contrast, only 1566 clutches were harvested in 2000, when egg laying activity showed a bi-modal distribution, peaking in May and again in July and August. iaceus on rainbow trout in consecutive years was 2.9 : 1 and 2.1 : 1. Estimates of the size of the female A. foliaceus population based on egg-laying activity in 1999 exceeded that derived from measurements of prevalence and intensity of infection, whereas in 2000, this was more in balance. A minimum temperature of 10 degree C was identified for egg laying, which occurred continuously from May to October in a broadly synchronous manner.. Copyright 2002 The Fisheries Society of the British Isles

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Microbial interactions depend on a range of biotic and environmental variables, and are both dynamic and unpredictable. For some purposes, and under defined conditions, it is nevertheless imperative to evaluate the inhibitory efficacy of microbes, such as those with potential as biocontrol agents. We selected six, phylogenetically diverse microbes to determine their ability to inhibit the ascomycete Fusarium
coeruleum, a soil-dwelling pathogen of potato tubers that causes the storage disease dry rot. Interaction assays, where colony development was quantified (for both fungal pathogen and potential control agents), were therefore carried out on solid media. The key parameters that contributed to, and were indicative of, inhibitory efficacy were identified as: fungal growth-rates (i) prior to contact with the biocontrol
agent and (ii) if/once contact with the biocontrol agent was established (i.e. in the zone of mixed
culture), and (iii) the ultimate distance traveled by the fungal mycelium. It was clear that there was no correlation between zones of fungal inhibition and the overall reduction in the extent of fungal colony development. An inhibition coefficient was devised which incorporated the potential contributions of distal inhibition of fungal growth-rate; prevention of mycelium development in the vicinity of the biocontrol
agent; and ability to inhibit plant-pathogen growth-rate in the zone of mixed culture (in a ratio of 2:2:1). The values derived were 84.2 for Bacillus subtilis (QST 713), 74.0 for Bacillus sp. (JC12GB42), 30.7 for Pichia anomala (J121), 19.3 for Pantoea agglomerans (JC12GB34), 13.9 for Pantoea sp. (S09:T:12), and
21.9 (indicating a promotion of fungal growth) for bacterial strain (JC12GB54). This inhibition coefficient, with a theoretical maximum of 100, was consistent with the extent of F. coeruleum-colony development (i.e. area, in cm2) and assays of these biocontrol agents carried out previously against Fusarium
spp., and other fungi. These findings are discussed in relation to the dynamics and inherent complexity of natural ecosystems, and the need to adapt models for use under specific sets of conditions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The insect pathogen Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosos can be effective biocontrol agents when relative humidity (RH) is close to 100%. At reduced water availability, germination of propagules, and therefore host infection, cannot occur. Cultures of B. bassiana, M. anisopliae and P. farinosus were grown under different conditions to obtain conidia with a modified polyol and trehalose content. Conidia with higher intracellular concentrations of glycerol and erythritol germinated both more quickly and at lower water activity (a(w)) than those from other treatments. In contrast, conidia containing up to 235.7 mg trehalose g-1 germinated significantly (P < 0 05) more slowly than those with an equivalent polyol content but less trehalose, regardless of water availability. Conidia from control treatments did not germinate below 0.951 - 0.935 a(w) (≡ 95.1 - 93.5% RH). In contrast, conidia containing up to 164.6 mg glycerol plus erythritol g-1 germinated down to 0.887 a(w) (≡ 88.7% RH). These conidia germinated below the water availability at which mycelial growth ceases (0.930 - 0.920 a(w)). Germ tube extension rates reflected the percentage germination of conidia, so the most rapid germ tube growth occurred after treatments which produced conidia containing the most glycerol and erythritol. This study shows for the first time that manipulating polyol content can extend the range of water availability over which fungal propagules can germinate. Physiological manipulation of conidia may improve biological control of insect pests in the field.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were grown on Sabouraud Dextrose Agar (SDA) modified with KCl to give a range of water activity (a(w)) from 0.938 to 0.998. Growth of all three species was optimal at 0.983 a(w) and growth occurred over the a(w) range tested. Acyclic sugar alcohol (polyol) and trehalose content of conidia was determined by HPLC and found to vary with species and a(w). Conidia of B. bassiana and P. farinosus were found to contain totals of 1.5% and 2.3% polyols respectively at 0.998 a(w), and double these amounts at <0.950 a(w). Conidia of M. anisopliae contained from 5.7% to 6.8% polyols at each a(w) tested. In conidia of all three species the predominant polyol was mannitol. The lower molecular weight polyols, arabitol and erythritol, were found to accumulate at reduced a(w). Small amounts of glycerol were present in conidia of each species; <15% total polyols. Conidia of B. bassiana and M. anisopliae contained about 0.5% trehalose from 0.970 to 0.998 a(w), but only trace amounts below 0.950 a(w). Conidia of P. farinosus contained 2.1% trehalose at 0.998 a(w) and this decreased to <0.1% below 0.950 a(w). Potential to manipulate the endogenous reserves of conidia of these biological control agents to enhance viability and desiccation tolerance is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The entomopathogenic fungi Beauveria bassiana, Metarhizium anisopliae and Paecilomyces farinosus were cultured on solid agar media containing different carbohydrate components (glycerol, glucose, trehalose or starch) at concentrations of ≤ 142.7 g added carbon 1-1 for 30 d at 25°C. The water activity (a(w)) of the media ranged from 0.925 to 0.998. Growth of M. anisopliae and P. farinosus was stimulated between 0.975 and 0.995 a(w) on glucose media and that of P. farinosus at 0. 975 a(w) on glycerol media. At < 0.970 a(w), growth of each fungal species was significantly reduced (P < 0.05). Polyhydroxy alcohols (polyols) and trehalose were extracted from conidia produced on different media and quantified using HPLC. Total polyol content of conidia produced on glucose media varied between 5.2 and 52.2 mg g-1 for B. bassiana, 77.3 and 90.3 mg g-1 for M. anisopliae, and 26.7 and 76.1 mg g-1 for P. farinosus. The amounts of specific polyols in conidia varied significantly from media of different glucose concentrations. Mannitol was the predominant polyol in conidia of all three species, with conidia of M. anisopliae, for example, containing as much as 75.2 mg mannitol g-1 when cultured on glucose media. The amount of the lower molecular mass polyols glycerol and erythritol was greater in conidia produced on glucose media with > 50.0 g added carbon 1-1 than that in conidia produced at lower glucose concentrations. Conidia contained between 10.8 and 20.8 mg glycerol plus erythritol g-1 on glucose media with 142.7 g added carbon 1-1, depending on species. Conversely, conidia of B. bassiana and P. farinosus contained maximum amounts of trehalose ( ≤ 23.5 mg g-1) when produced on glucose media with < 50.0 g added carbon l-1, and trehalose content was considerably less at higher glucose concentrations. There were accumulations of glycerol and erythritol in conidia of all three species when grown on glycerol media with > 25.0 g added carbon 1-1; conidia of B. bassiana contained up to 154.0 mg glycerol plus erythritol g-1. hen B. bassiana and P. farinosus were grown on trehalose media, conidia contained up to 222.1 mg trehalose g-1. By contrast, conidia of M. anisopliae contained < 17.0 mg trehalose g-1 under all conditions tested. The water availability of solutions of different polyols is discussed in relation to their potential to act in osmotic adjustment during germination. The ability to manipulate polyol and trehalose content of fungal propagules may be critical in enhancing the storage life and efficacy of biological control agents.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The virulence to insects and tolerance to heat and UV-B radiation of conidia of entomopathogenic fungi are greatly influenced by physical, chemical, and nutritional conditions during mycelial growth. This is evidenced, for example, by the stress phenotypes of Metarhizium robertsii produced on various substrates. Conidia from minimal medium (Czapek's medium without sucrose), complex medium, and insect (Lepidoptera and Coleoptera) cadavers had high, moderate, and poor tolerance to UV-B radiation, respectively. Furthermore, conidia from minimal medium germinated faster and had increased heat tolerance and were more virulent to insects than those from complex medium. Low water-activity or alkaline culture conditions also resulted in production of conidia with high tolerance to heat or UV-B radiation. Conidia produced on complex media exhibited lower stress tolerance, whereas those from complex media supplemented with NaCl or KCl (to reduce water activity) were more tolerant to heat and UV-B than those from the unmodified complex medium. Osmotic and nutritive stresses resulted in production of conidia with a robust stress phenotype, but also were associated with low conidial yield. Physical conditions such as growth under illumination, hypoxic conditions, and heat shock before conidial production also induced both higher UV-B and heat tolerance; but conidial production was not decreased. In conclusion, physical and chemical parameters, as well as nutrition source, can induce great variability in conidial tolerance to stress for entomopathogenic fungi. Implications are discussed in relation to the ecology of entomopathogenic fungi in the field, and to their use for biological control. This review will cover recent technologies on improving stress tolerance of entomopathogenic fungi for biological control of insects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Bdellovibrio bacteriovorus is a bacterium which preys upon and kills Gram-negative bacteria, including the zoonotic pathogens Escherichia coli and Salmonella. Bdellovibrio has potential as a biocontrol agent, but no reports of it being tested in living animals have been published, and no data on whether Bdellovibrio might spread between animals are available. In this study, we tried to fill this knowledge gap, using B. bacteriovorus HD100 doses in poultry with a normal gut microbiota or predosed with a colonizing Salmonella strain. In both cases, Bdellovibrio was dosed orally along with antacids. After dosing non-Salmonella-infected birds with Bdellovibrio, we measured the health and well-being of the birds and any changes in their gut pathology and culturable microbiota, finding that although a Bdellovibrio dose at 2 days of age altered the overall diversity of the natural gut microbiota in 28-day-old birds, there were no adverse effects on their growth and well-being. Drinking water and fecal matter from the pens in which the birds were housed as groups showed no contamination by Bdellovibrio after dosing. Predatory Bdellovibrio orally administered to birds that had been predosed with a gut-colonizing Salmonella enterica serovar Enteritidis phage type 4 strain (an important zoonotic pathogen) significantly reduced Salmonella numbers in bird gut cecal contents and reduced abnormal cecal morphology, indicating reduced cecal inflammation, compared to the ceca of the untreated controls or a nonpredatory ΔpilA strain, suggesting that these effects were due to predatory action. This work is a first step to applying Bdellovibrio therapeutically for other animal, and possibly human, infections.