3 resultados para bioavailability assessment
Resumo:
Copper levels of nearly 500 mg l(-1) were measured in aqueous extracts of soil and sediment samples from the lowlands of Antofagasta. Arsenic levels of up to 183 mg l(-1) were found in river sediments, and 27.5 mg l(-1) arsenic was found at the location of a dam where potable water is extracted. This indicates that the arsenic contamination of water supplies reported recently for the pre-Andes may be a widespread problem throughout the region. Copper contamination from smelting activities also provides cause for concern as elevated levels were found in aqueous extracts of soil up to 20 km away from a smelter. This study went beyond traditional chemical analysis by assessing the potential benefits of using microbial biosensors as an alternative to determination of chemical speciation, to provide an environmentally relevant interpretation of soil/sediment residue levels. This approach is simple to use and enables a rapid, low cost assessment of pollutant bioavailability. It may, therefore, be of use for further investigations in the region and beyond.
Resumo:
Consumption of arsenic (As) wine is a traditional activity during the classic Chinese festival of Duanwu, colloquially known worldwide as the Dragon Boat Day. Arsenic wine is drunk on the morning of the fifth day of the fifth lunar calendar month to commemorate the death of Qu Yuan, a famed Chinese poet who drowned himself in protest of a corrupt government, and to protect against ill fortune. Although realgar minerals are characteristically composed of sparingly soluble tetra-arsenic tetra-sulfides (As(4)S(4)), purity does vary with up to 10% of As being present as non-sulfur bound species, such as arsenate (As(v)) and arsenite (As(III)). Despite, the renewed interest in As speciation and the bioaccessibility of the active As components in realgar based Chinese medicines, little is known about the safety surrounding the cultural practice of drinking As wine. In a series of experiments the speciation and solubility of As in a range of wines were investigated. Furthermore, a simulated gastrointestinal system was employed to predict the impact of digestive processes on As bioavailability. The predominant soluble As species found in all the wines were As(III) and As(v). Based on typical As wine recipes employing 0.1 g realgar mL(-1) wine, the concentration of dissolved As ranged from ca. 100 to 400 mg L(-1) depending on the ethanol content of the preparation: with the As solubility found to be higher in wines with a lower proportion of ethanol. Based on a common 100 mL measure of wine with a concentration of 400 mg As L(-1), the amount of soluble As would equate to around half of the acute minimal lethal dose for adults. This is likely an underestimate of the bioaccessible concentration, as a three-fold increase in bioaccessibility could be observed in the intestinal phase based on the results from the stimulated gastrointestinal system. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Interaction of organic xenobiotics with soil water-soluble humic material (WSHM) may influence their environmental fate and bioavailability. We utilized bacterial assays (lux-based toxicity and mineralization by Burkholderia sp. RASC) to assess temporal changes in the bioavailability of [14C]-2,4-dichlorophenol (2,4-DCP) in soil water extracts (29.5 μg mL-1 2,4-DCP; 840.2 μg mL-1 organic carbon). HPLC determined and bioavailable concentrations were compared. Gel permeation chromatography (GPC) was used to confirm the association of a fraction (>50%) of [14C]-2,4-DCP with WSHM. Subtle differences in parameters describing 2,4-DCP mineralization curves were recorded for different soil-2,4-DCP contact times. Problems regarding the interpretation of mineralization data when assessing the bioavailability of toxic compounds are discussed. The lux-bioassay revealed a time-dependent reduction in 2,4-DCP bioavailability: after 7 d, less than 20% was bioavailable. However, GPC showed no quantitative difference in the amount of WSHM-associated 2,4-DCP over this time. These data suggest qualitative changes in the nature of the 2,4-DCP-WSHM association and that associated 2,4-DCP may exert a toxic effect. Although GPC distinguished between free- and WSHM-associated 2,4-DCP, it did not resolve the temporal shift in bioavailability revealed by the lux biosensor. These results stress that assessment of risk posed by chemicals must be considered using appropriate biological assays.