66 resultados para binaries : eclipsing


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aims: We investigate the characteristics of two newly discovered short-period, double-lined, massive binary systems in the Large Magellanic Cloud, VFTS 450 (O9.7 II-Ib + O7::) and VFTS 652 (B1 Ib + O9: III:). 

Methods: We perform model-atmosphere analyses to characterise the photospheric properties of both members of each binary (denoting the "primary" as the spectroscopically more conspicuous component). Radial velocities and optical photometry are used to estimate the binary-system parameters. 

Results: We estimate Teff = 27 kK, log g = 2.9 (cgs) for the VFTS 450 primary spectrum (34 kK, 3.6: for the secondary spectrum); and Teff = 22 kK, log g = 2.8 for the VFTS 652 primary spectrum (35 kK, 3.7: for the secondary spectrum). Both primaries show surface nitrogen enrichments (of more than 1 dex for VFTS 652), and probable moderate oxygen depletions relative to reference LMC abundances. We determine orbital periods of 6.89 d and 8.59 d for VFTS 450 and VFTS 652, respectively, and argue that the primaries must be close to filling their Roche lobes. Supposing this to be the case, we estimate component masses in the range ∼20-50 M

Conclusions: The secondary spectra are associated with the more massive components, suggesting that both systems are high-mass analogues of classical Algol systems, undergoing case-A mass transfer. Difficulties in reconciling the spectroscopic analyses with the light-curves and with evolutionary considerations suggest that the secondary spectra are contaminated by (or arise in) accretion disks.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present time-resolved J-band spectroscopy of the short-period cataclysmic variable SDSS J143317.78+101123.3. We detect absorption lines from the sub-stellar donor star in this system, which contributes 38 +/- 5 per cent to the J-band light. From the relative strengths of the absorption lines in the J band, we estimate the spectral type of the donor star to be L2 +/- 1. These data are the first spectroscopic detection of a donor with a confirmed sub-stellar mass in a cataclysmic variable, and the spectral type is consistent with that expected from semi-empirical evolutionary models.

Using skew mapping, we have been able to derive an estimate for the radial velocity of the donor of K-d = 520 +/- 60 km/s. This value is consistent with, though much less precise than, predictions from mass determinations found via photometric fitting of the eclipse light curves.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We report the discovery and characterization of a deeply eclipsing AM CVn-system, Gaia14aae (=ASSASN-14cn). Gaia14aae was identified independently by the All-Sky Automated Survey for Supernovae (ASAS-SN; Shappee et al.) and by the Gaia Science Alerts project, during two separate outbursts. A third outburst is seen in archival Pan-STARRS-1 (PS1; Schlafly et al.; Tonry et al.; Magnier et al.) and ASAS-SN data. Spectroscopy reveals a hot, hydrogen-deficient spectrum with clear double-peaked emission lines, consistent with an accreting double-degenerate classification. We use follow-up photometry to constrain the orbital parameters of the system. We find an orbital period of 49.71 min, which places Gaia14aae at the long period extremum of the outbursting AM CVn period distribution. Gaia14aae is dominated by the light from its accreting white dwarf (WD). Assuming an orbital inclination of 90° for the binary system, the contact phases of the WD lead to lower limits of 0.78 and 0.015 M⊙ on the masses of the accretor and donor, respectively, and a lower limit on the mass ratio of 0.019. Gaia14aae is only the third eclipsing AM CVn star known, and the first in which the WD is totally eclipsed. Using a helium WD model, we estimate the accretor's effective temperature to be 12 900 ± 200 K. The three outburst events occurred within four months of each other, while no other outburst activity is seen in the previous 8 yr of Catalina Real-time Transient Survey (CRTS; Drake et al.), Pan-STARRS-1 and ASAS-SN data. This suggests that these events might be rebrightenings of the first outburst rather than individual events.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We present high-speed photometry and high-resolution spectroscopy of the eclipsing post-common-envelope binary QS Virginis (QS Vir). Our Ultraviolet and Visual Echelle Spectrograph (UVES) spectra span multiple orbits over more than a year and reveal the presence of several large prominences passing in front of both the M star and its white dwarf companion, allowing us to triangulate their positions. Despite showing small variations on a time-scale of days, they persist for more than a year and may last decades. One large prominence extends almost three stellar radii from the M star. Roche tomography reveals that the M star is heavily spotted and that these spots are long-lived and in relatively fixed locations, preferentially found on the hemisphere facing the white dwarf. We also determine precise binary and physical parameters for the system. We find that the 14 220 ± 350 K white dwarf is relatively massive, 0.782 ± 0.013 M⊙, and has a radius of 0.010 68 ± 0.000 07 R⊙, consistent with evolutionary models. The tidally distorted M star has a mass of 0.382 ± 0.006 M⊙ and a radius of 0.381 ± 0.003 R⊙, also consistent with evolutionary models. We find that the magnesium absorption line from the white dwarf is broader than expected. This could be due to rotation (implying a spin period of only ˜700 s), or due to a weak (˜100 kG) magnetic field, we favour the latter interpretation. Since the M star's radius is still within its Roche lobe and there is no evidence that it is overinflated, we conclude that QS Vir is most likely a pre-cataclysmic binary just about to become semidetached.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We know now from radial velocity surveys and transit space missions thatplanets only a few times more massive than our Earth are frequent aroundsolar-type stars. Fundamental questions about their formation history,physical properties, internal structure, and atmosphere composition are,however, still to be solved. We present here the detection of a systemof four low-mass planets around the bright (V = 5.5) and close-by (6.5pc) star HD 219134. This is the first result of the Rocky Planet Searchprogramme with HARPS-N on the Telescopio Nazionale Galileo in La Palma.The inner planet orbits the star in 3.0935 ± 0.0003 days, on aquasi-circular orbit with a semi-major axis of 0.0382 ± 0.0003AU. Spitzer observations allowed us to detect the transit of the planetin front of the star making HD 219134 b the nearest known transitingplanet to date. From the amplitude of the radial velocity variation(2.25 ± 0.22 ms-1) and observed depth of the transit(359 ± 38 ppm), the planet mass and radius are estimated to be4.36 ± 0.44 M⊕ and 1.606 ± 0.086R⊕, leading to a mean density of 5.76 ± 1.09 gcm-3, suggesting a rocky composition. One additional planetwith minimum-mass of 2.78 ± 0.65 M⊕ moves on aclose-in, quasi-circular orbit with a period of 6.767 ± 0.004days. The third planet in the system has a period of 46.66 ± 0.08days and a minimum-mass of 8.94 ± 1.13 M⊕, at0.233 ± 0.002 AU from the star. Its eccentricity is 0.46 ±0.11. The period of this planet is close to the rotational period of thestar estimated from variations of activity indicators (42.3 ± 0.1days). The planetary origin of the signal is, however, thepreferredsolution as no indication of variation at the corresponding frequency isobserved for activity-sensitive parameters. Finally, a fourth additionallonger-period planet of mass of 71 M⊕ orbits the starin 1842 days, on an eccentric orbit (e = 0.34 ± 0.17) at adistance of 2.56 AU.The photometric time series and radial velocities used in this work areavailable in electronic form at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr(ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A72

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP 0247-25 B). The remnant is in a rarely observed state evolving to higher effective temperatures at nearly constant luminosity prior to becoming a very low mass white dwarf composed almost entirely of helium, i.e. it is a pre-helium white dwarf (pre-He-WD). We have used the photometric database from theWide Angle Search for Planets (WASP) to find 17 eclipsing binary stars with orbital periods P = 0.7-2.2 d with similar light curves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic light curves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for six of these systems to confirm that the companions to the A-type stars in these binaries have very low masses (≈0.2M⊙). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25 B. © 2013 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Exoplanet transit and Doppler surveys discover many binary stars during their operation that can be used to conduct a variety of ancillary science. Specifically, eclipsing binary stars can be used to study the stellar mass-radius relationship and to test predictions of theoretical stellar evolution models. By cross-referencing 24 binary stars found in the MARVELS Pilot Project with SuperWASP photometry, we find two new eclipsing binaries, TYC 0272-00458-1 and TYC 1422-01328-1, which we use as case studies to develop a general approach to eclipsing binaries in survey data. TYC 0272-00458-1 is a single-lined spectroscopic binary for which we calculate a mass of the secondary and radii for both components using reasonable constraints on the primary mass through several different techniques. For a primary mass of M 1 = 0.92 ± 0.1 M sun, we find M 2 = 0.610 ± 0.036 M sun, R 1 = 0.932 ± 0.076 R sun, and R 2 = 0.559 ± 0.102 R sun, and find that both stars have masses and radii consistent with model predictions. TYC 1422-01328-1 is a triple-component system for which we can directly measure the masses and radii of the eclipsing pair. We find that the eclipsing pair consists of an evolved primary star (M 1 = 1.163 ± 0.034 M sun, R 1 = 2.063 ± 0.058 R sun) and a G-type dwarf secondary (M 2 = 0.905 ± 0.067 M sun, R 2 = 0.887 ± 0.037 R sun). We provide the framework necessary to apply this analysis to much larger data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is well known that magnetic activity in late-type stars increases with increasing rotation rate. Using inversion techniques akin to medical imaging, the rotationally broadened profiles from such stars can be used to reconstruct `Doppler images' of the distribution of cool, dark starspots on their stellar surfaces. Interacting binaries, however, contain some of the most rapidly rotating late-type stars known and thus provide important tests of stellar dynamo models. Furthermore, magnetic activity is thought to play a key role in their evolution, behaviour and accretion dynamics. Despite this, we know comparatively little about the magnetic activity and its influence on such binaries. In this review we summarise the concepts behind indirect imaging of these systems, and present movies of the starspot distributions on the cool stars in some interacting binaries. We conclude with a look at the future opportunities that such studies may provide.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present near-infrared linear spectropolarimetry of a sample of persistent X-ray binaries, Sco X-1, Cyg X-2, and GRS 1915+105. The slopes of the spectra are shallower than what is expected from a standard steady state accretion disk, and can be explained if the near-infrared flux contains a contribution from an optically thin jet. For the neutron star systems, Sco X-1 and Cyg X-2, the polarization levels at 2.4 mu m are 1.3% +/- 0.10% and 5.4% +/- 0.7%, respectively, which is greater than the polarization level at 1.65 mu m. This cannot be explained by interstellar polarization or electron scattering in the anisotropic environment of the accretion flow. We propose that the most likely explanation is that this is the polarimetric signature of synchrotron emission arising from close to the base of the jets in these systems. In the black hole system GRS 1915+105 the observed polarization, although high (5.0% +/- 1.2% at 2.4 mu m), may be consistent with interstellar polarization. For Sco X-1 the position angle of the radio jet on the sky is approximately perpendicular to the near-infrared position angle (electric vector), suggesting that the magnetic field is aligned with the jet. These observations may be a first step toward probing the ordering, alignment, and variability of the outflow magnetic field in a region closer to the central accreting object than is observed in the radio band.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present high-speed, three-colour photometry of the eclipsing cataclysmic variables GY Cnc, IR Com and HT Cas. We find that the sharp eclipses in GY Cnc and IR Com are due to eclipses of the white dwarf. There is some evidence for a bright-spot on the edge of the accretion disc in GY Cnc, but not in IR Com. Eclipse mapping of HT Cas is presented which shows changes in the structure of the quiescent accretion disc. Observations in 2002 show the accretion disc to be invisible except for the presence of a bright-spot at the disc edge. 2003 observations, however, clearly show a bright inner disc and the bright-spot to be much fainter than in 2002. Although no outburst was associated with either set of quiescent observations, the system was similar to 0.6 mJy brighter in 2003, mainly due to the enhanced emission from the inner disc. We propose that these changes are due to variations in the mass-transfer rate from the secondary star and through the disc. The disc colours indicate that it is optically thin in both its inner and outer regions. We estimate the white dwarf temperature of HT Cas to be 15 000 +/- 1000 K in 2002 and 14 000 +/- 1000 K in 2003.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate the effects that star-spots have on the light curves of eclipsing binaries, and in particular how they may affect the accurate measurement of eclipse timings. Concentrating on systems containing a low-mass main-sequence star and a white dwarf, we find that if star-spots exhibit the Wilson depression they can alter the times of primary eclipse ingress and egress by several seconds for typical binary parameters and star-spot depressions. In addition, we find that the effect on the eclipse ingress/egress times becomes more profound for lower orbital inclinations. We show how it is possible, in principle, to determine estimates of both the binary inclination and the depth of the Wilson depression from light curve analysis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present high-speed, three-colour photometry of the faint eclipsing cataclysmic variable OU Vir. For the first time in OU Vir, separate eclipses of the white dwarf and the bright spot have been observed. We use timings of these eclipses to derive a purely photometric model of the system, obtaining a mass ratio of q=0.175+/-0.025, an inclination of i=79.degrees2+/-0.degrees7 and a disc radius of R-d/a=0.2315+/-0.0150. We separate the white dwarf eclipse from the light curve and, by fitting a blackbody spectrum to its flux in each passband, obtain a white dwarf temperature of T=13900+/-600 K and a distance of D=51+/-17 pc. Assuming that the primary obeys the Nauenberg mass-radius relation for white dwarfs and allowing for temperature effects, we also find a primary mass M-w/M-circle dot=0.89+/-0.20, a primary radius R-w/R-circle dot=0.0097+/-0.0031 and an orbital separation a/R-circle dot=0.74+/-0.05.