3 resultados para beekeeping
Resumo:
The economically most important honey bee species, Apis mellifera, was formerly considered to be parasitized by one microsporidian, Nosema apis. Recently, [Higes, M., Martin, R., Meana, A., 2006. Nosema ceranae, a new microsporidian parasite in honeybees in Europe, J. Invertebr. Pathol. 92, 93-95] and [Huang, W.-F., Jiang, J.-H., Chen, Y.-W., Wang, C.-H., 2007. A Nosema ceranae isolate from the honeybee Apis mellifera. Apidologie 38, 30-37] used 16S (SSU) rRNA gene sequences to demonstrate the presence of Nosema ceranae in A. mellifera from Spain and Taiwan, respectively. We developed a rapid method to differentiate between N. apis and N. ceranae based on PCR-RFLPs of partial SSU rRNA. The reliability of the method was confirmed by sequencing 29 isolates from across the world (N = 9 isolates gave N. apis RFLPs and sequences, N = 20 isolates gave N. ceranae RFLPs and sequences; 100%, correct classification). We then employed the method to analyze N = 115 isolates from across the world. Our data, combined with N = 36 additional published sequences demonstrate that (i) N. ceranae most likely jumped host to A. mellifera, probably within the last decade, (ii) that host colonies and individuals may be co-infected by both microsporidia species, and that (iii) N. ceranae is now a parasite of A. mellifera across most of the world. The rapid, long-distance dispersal of N. ceranae is likely due to transport of infected honey bees by commercial or hobbyist beekeepers. We discuss the implications of this emergent pathogen for worldwide beekeeping. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
Although pollinator declines are a global biodiversity threat, the demography of the western honeybee (Apis mellifera) has not been considered by conservationists because it is biased by the activity of beekeepers. To fill this gap in pollinator decline censuses and to provide a broad picture of the current status of honeybees across their natural range, we used microsatellite genetic markers to estimate colony densities and genetic diversity at different locations in Europe, Africa, and central Asia that had different patterns of land use. Genetic diversity and colony densities were highest in South Africa and lowest in Northern Europe and were correlated with mean annual temperature. Confounding factors not related to climate, however, are also likely to influence genetic diversity and colony densities in honeybee populations. Land use showed a significantly negative influence over genetic diversity and the density of honeybee colonies over all sampling locations. In Europe honeybees sampled in nature reserves had genetic diversity and colony densities similar to those sampled in agricultural landscapes, which suggests that the former are not wild but may have come from managed hives. Other results also support this idea: putative wild bees were rare in our European samples, and the mean estimated density of honeybee colonies on the continent closely resembled the reported mean number of managed hives. Current densities of European honeybee populations are in the same range as those found in the adverse climatic conditions of the Kalahari and Saharan deserts, which suggests that beekeeping activities do not compensate for the loss of wild colonies. Our findings highlight the importance of reconsidering the conservation status of honeybees in Europe and of regarding beekeeping not only as a profitable business for producing honey, but also as an essential component of biodiversity conservation.