53 resultados para backward warping
Resumo:
We present a semiclassical complex angular momentum (CAM) analysis of the forward scattering peak which occurs at a translational collision energy around 32 meV in the quantum mechanical calculations for the F + H2(v = 0, j = 0) ? HF(v' = 2, j' = 0) + H reaction on the Stark–Werner potential energy surface. The semiclassical CAM theory is modified to cover the forward and backward scattering angles. The peak is shown to result from constructive/destructive interference of the two Regge states associated with two resonances, one in the transition state region and the other in the exit channel van der Waals well. In addition, we demonstrate that the oscillations in the energy dependence of the backward differential cross section are caused by the interference between the direct backward scattering and the decay of the two resonance complexes returning to the backward direction after one full rotation.
Resumo:
It is proved that for any separable infinite dimensional Banach space X, there is a bounded linear operator T on X such that T satisfies the Kitai criterion. The proof is based on a quasisimilarity argument and on showing that I + T satisfies the Kitai criterion for certain backward weighted shifts T.
Resumo:
Boundary layer transition estimation and modelling is essential for the design of many engineering products across many industries. In this paper, the Reynolds-averaged Navier–Stokes are solved in conjunction with three additional transport equations to model and predict boundary layer transition. The transition model (referred to as the kTkT–kLkL–ωω model) is based on the kk–ωω framework with an additional transport equation to incorporate the effects low-frequency flow oscillations in the form of a laminar kinetic energy (kLkL). Firstly, a number of rectifications are made to the original kTkT–kLkL–ωω framework in order to ensure an appropriate response to the free-stream turbulence level and to improve near wall predictions. Additionally, the model is extended to incorporate the capability to model transition due to surface irregularities in the form of backward-facing steps with maximum non-dimensional step sizes of approximately 1.5 times the local displacement thickness of the boundary layer where the irregularity is located (i.e k/δ∗⪅1.5k/δ∗⪅1.5) at upstream turbulence intensities in the range 0.01<Tu(%)<0.80.01<Tu(%)<0.8. A novel function is proposed to incorporate transition sensitivity due to aft-facing steps. This paper details the rationale behind the development of this new function and demonstrates its suitability for transition onset estimation on a flat plate at zero pressure gradient.
Resumo:
A forward and backward least angle regression (LAR) algorithm is proposed to construct the nonlinear autoregressive model with exogenous inputs (NARX) that is widely used to describe a large class of nonlinear dynamic systems. The main objective of this paper is to improve model sparsity and generalization performance of the original forward LAR algorithm. This is achieved by introducing a replacement scheme using an additional backward LAR stage. The backward stage replaces insignificant model terms selected by forward LAR with more significant ones, leading to an improved model in terms of the model compactness and performance. A numerical example to construct four types of NARX models, namely polynomials, radial basis function (RBF) networks, neuro fuzzy and wavelet networks, is presented to illustrate the effectiveness of the proposed technique in comparison with some popular methods.
Resumo:
We present a new wrapper feature selection algorithm for human detection. This algorithm is a hybrid featureselection approach combining the benefits of filter and wrapper methods. It allows the selection of an optimalfeature vector that well represents the shapes of the subjects in the images. In detail, the proposed featureselection algorithm adopts the k-fold subsampling and sequential backward elimination approach, while thestandard linear support vector machine (SVM) is used as the classifier for human detection. We apply theproposed algorithm to the publicly accessible INRIA and ETH pedestrian full image datasets with the PASCALVOC evaluation criteria. Compared to other state of the arts algorithms, our feature selection based approachcan improve the detection speed of the SVM classifier by over 50% with up to 2% better detection accuracy.Our algorithm also outperforms the equivalent systems introduced in the deformable part model approach witharound 9% improvement in the detection accuracy
Resumo:
In 2006 the Gowers Review of Intellectual Property made a series of recommendations for reforming the intellectual property regime to better serve the interests of both consumers and industry. Among the proposed recommendations was that an exception for parody be introduced within the Copyright Designs and Patents Act 1988. In January 2008 the Intellectual Property Office (the IPO) launched the first part of a two-stage consultation process on exceptions to copyright. As part of that consultation process, the IPO proposed a ‘fair dealing style exception’ for parody, and sought views on whether a new exception should be introduced as well as what form it might take. In December 2009 the IPO launched the second stage of this consultation process. The second consultation document rejected the case for a new parody exception. This article considers the place of parody within the copyright regime and the objections levelled against the introduction of an exception set out within the IPO's second consultation document. It invites the IPO to reconsider its decision not to recommend the introduction of a specific exception for parody within the UK.
Resumo:
The perception of Ireland and India as ‘zones of famine’ led many nineteenth-century observers to draw analogies between these two troublesome parts of the British empire. This article investigates this parallel through the career of James Caird (1816–92), and specifically his interventions in the latter stages of both the Great Irish Famine of 1845–50, and the Indian famines of 1876–9. Caird is best remembered as the joint author of the controversial dissenting minute in the Indian famine commission report of 1880; this article locates the roots of his stance in his previous engagements with Irish policy. Caird's interventions are used to track the trajectory of an evolving ‘Peelite’ position on famine relief, agricultural reconstruction, and land reform between the 1840s and 1880s. Despite some divergences, strong continuities exist between the two interventions – not least concern for the promotion of agricultural entrepreneurship, for actively assisting economic development in ‘backward’ economies, and an acknowledgement of state responsibility for preserving life as an end in itself. Above all in both cases it involved a critique of a laissez-faire dogmatism – whether manifest in the ‘Trevelyanism’ of 1846–50 or the Lytton–Temple system of 1876–9.
Resumo:
The transfer ionization process offers a unique opportunity to study radial and angular electron correlations in the helium atom. We report calculations for the multiple differential cross sections of the transfer ionization process p + He --> H + He++ + e(-). The results of these calculations demonstrate the strong sensitivity of the fully differential cross sections to fine details of electron correlation in the target atom. Specifically, angular electron correlation in the ground state of helium results in a broad peak in the electron emission spectra in the backward direction, relative to the incoming beam. Our model explains some of the key effects observed in measurements of multiple differential cross sections using the COLTRIMS technique.
Resumo:
We have performed a kinematically complete experiment and calculations on single ionization in 100 MeV/amu C6+ + He collisions. For electrons ejected into the scattering plane (defined by the initial and final projectile momentum vectors) our first- and higher-order calculations are in good agreement with the data. In the plane perpendicular to the scattering plane and containing the initial projectile axis a strong forward-backward asymmetry is observed. In this plane both the first-order and the higher-order calculations do not provide good agreement neither with the data nor amongst each other.
Resumo:
Experimental data are presented for the scattering of cold electrons by CS2, for both integral and backward scattering, between a few meV and a few hundred meV impact energy. Giant resonances with cross sections in excess of 50 Angstrom(2) are observed below 100 meV, associated with the transient formation of CS2- at 15 meV and with the bend and symmetric stretch of CS2 at thresholds of 49 and 82 meV, respectively. The resonance at 49 meV is 2 orders of magnitude greater in cross section than a dipole impulsive model predicts. These structures are superimposed on a sharp rise in the scattering cross section at low energy, which may be attributed to virtual state scattering.
Resumo:
The nonlinear interaction between two laser beams in a plasma is investigated in the weakly nonlinear and relativistic regime. The evolution of the laser beams is governed by two nonlinear Schrodinger equations that are coupled with the slow plasma density response. A nonlinear dispersion relation is derived and used to study the growth rates of the Raman forward and backward scattering instabilities as well of the Brillouin and self-focusing/modulational instabilities. The nonlinear evolution of the instabilities is investigated by means of direct simulations of the time-dependent system of nonlinear equations. (c) 2006 American Institute of Physics.
Resumo:
Signal transduction pathways describe the dynamics of cellular response to input signalling molecules at receptors on the cell membrane. The Mitogen-Activated Protein Kinase (MAPK) cascade is one of such pathways that are involved in many important cellular processes including cell growth and proliferation. This paper describes a black-box model of this pathway created using an advanced two-stage identification algorithm. Identification allows us to capture the unique features and dynamics of the pathway and also opens up the possibility of regulatory control design. In the approach described, an optimal model is obtained by performing model subset selection in two stages, where the terms are first determined by a forward selection method and then modified using a backward selection model refinement. The simulation results demonstrate that the model selected using the two-stage algorithm performs better than with the forward selection method alone.