55 resultados para bósons Z


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In experiments at the high-power Z-facility at Sandia National Laboratory in Albuquerque, New Mexico, we have been able to produce a low density photoionized laboratory plasma of Fe mixed with NaF. The conditions in the experiment allow a meaningful comparison with X-ray emission from astrophysical sources. The charge state distributions of Fe, Na and F are determined in this plasma using high resolution X-ray spectroscopy. Independent measurements of the density and radiation flux indicate unprecedented values for the ionization parameter xi = 20-25 erg cm s(-1) under nearly steady-state conditions. First comparisons of the measured charge state distributions with X-ray photoionization models show reasonable agreement, although many questions remain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic dipole transitions between fine structure levels in the ground term of Ti-like ions, (3d(4)) D-5(2)-D-5(3), were investigated by observation of visible and near-UV light for several elements with atomic numbers from 51 to 78. The wavelengths are compared with theoretical values we recently calculated. The differences between the present calculations and measurements are less than 0.6%. The anomalous wavelength stability predicted by Feldman, Indelicato and Sugar [J. Opt. Soc. Am. B 8, 3 (1991)] was observed. We attribute this anomalous wavelength stability to the transition from LS to JJ coupling and the asymptotic behavior of the transition energies in the intermediate coupling regime.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE: Poly(ADP-ribose) polymerase (PARP) plays an important role in DNA repair, and PARP inhibitors can enhance the activity of DNA-damaging agents in vitro and in vivo. AG014699 is a potent PARP inhibitor in phase II clinical development. However, the range of therapeutics with which AG014699 could interact via a DNA-repair based mechanism is limited. We aimed to investigate a novel, vascular-based activity of AG014699, underlying in vivo chemosensitization, which could widen its clinical application. EXPERIMENTAL DESIGN: Temozolomide response was analyzed in vitro and in vivo. Vessel dynamics were monitored using "mismatch" following the administration of perfusion markers and real-time analysis of fluorescently labeled albumin uptake in to tumors established in dorsal window chambers. Further mechanistic investigations used ex vivo assays of vascular smooth muscle relaxation, gut motility, and myosin light chain kinase (MLCK) inhibition. RESULTS: AG014699 failed to sensitize SW620 cells to temozolomide in vitro but induced pronounced enhancement in vivo. AG014699 (1 mg/kg) improved tumor perfusion comparably with the control agents nicotinamide (1 g/kg) and AG14361 (forerunner to AG014699; 10 mg/kg). AG014699 and AG14361 relaxed preconstricted vascular smooth muscle more potently than the standard agent, hydralazine, with no impact on gut motility. AG014699 inhibited MLCK at concentrations that relaxed isolated arteries, whereas AG14361 had no effect. CONCLUSION: Increased vessel perfusion elicited by AG014699 could increase tumor drug accumulation and therapeutic response. Vasoactive concentrations of AG014699 do not cause detrimental side effects to gut motility and may increase the range of therapeutics with which AG014699 could be combined with for clinical benefi