3 resultados para autorization of pharmaceuticals


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Lumacaftor/ivacaftor combination therapy demonstrated clinical benefits inpatients with cystic fibrosis homozygous for the Phe508del CFTR mutation.Pretreatment lung function is a confounding factor that potentially impacts the efficacyand safety of lumacaftor/ivacaftor therapy. Methods Two multinational, randomised, double-blind, placebo-controlled, parallelgroupPhase 3 studies randomised patients to receive placebo or lumacaftor (600 mgonce daily [qd] or 400 mg every 12 hours [q12h]) in combination with ivacaftor (250 mgq12h) for 24 weeks. Prespecified analyses of pooled efficacy and safety data by lungfunction, as measured by percent predicted forced expiratory volume in 1 second(ppFEV1), were performed for patients with baseline ppFEV1 <40 (n=81) and ≥40(n=1016) and screening ppFEV1 <70 (n=730) and ≥70 (n=342). These studies wereregistered with ClinicalTrials.gov (NCT01807923 and NCT01807949). Findings The studies were conducted from April 2013 through April 2014.Improvements in the primary endpoint, absolute change from baseline at week 24 inppFEV1, were observed with both lumacaftor/ivacaftor doses in the subgroup withbaseline ppFEV1 <40 (least-squares mean difference versus placebo was 3∙7 and 3.3percentage points for lumacaftor 600 mg qd/ivacaftor 250 mg q12h and lumacaftor 400mg q12h/ivacaftor 250 mg q12h, respectively [p<0∙05] and in the subgroup with baselineppFEV1 ≥40 (3∙3 and 2∙8 percentage points, respectively [p<0∙001]). Similar absoluteimprovements versus placebo in ppFEV1 were observed in subgroups with screening 4ppFEV1 <70 (3∙3 and 3∙3 percentage points for lumacaftor 600 mg qd/ivacaftor 250 mgq12h and lumacaftor 400 mg q12h/ivacaftor 250 mg q12h, respectively [p<0∙001]) and≥70 (3∙3 and 1∙9 percentage points, respectively [p=0.002] and [p=0∙079]). Increases inBMI and reduction in number of pulmonary exacerbation events were observed in bothLUM/IVA dose groups vs placebo across all lung function subgroups. Treatment wasgenerally well tolerated, although the incidence of some respiratory adverse events washigher with active treatment than with placebo. Interpretation Lumacaftor/ivacaftor combination therapy benefits patients homozygousfor Phe508del CFTR who have varying degrees of lung function impairment. Funding Vertex Pharmaceuticals Incorporated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Breast cancer is characterized by a series of genetic mutations and is therefore ideally placed for gene therapy intervention. The aim of gene therapy is to deliver a nucleic acid-based drug to either correct or destroy the cells harboring the genetic aberration. More recently, cancer gene therapy has evolved to also encompass delivery of RNA interference technologies, as well as cancer DNA vaccines. However, the bottleneck in creating such nucleic acid pharmaceuticals lies in the delivery. Deliverability of DNA is limited as it is prone to circulating nucleases; therefore, numerous strategies have been employed to aid with biological transport. This review will discuss some of the viral and nonviral approaches to breast cancer gene therapy, and present the findings of clinical trials of these therapies in breast cancer patients. Also detailed are some of the most recent developments in nonviral approaches to targeting in breast cancer gene therapy, including transcriptional control, and the development of recombinant, multifunctional bio-inspired systems. Lastly, DNA vaccines for breast cancer are documented, with comment on requirements for successful pharmaceutical product development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mevalonate pathway is of important clinical, pharmaceutical and biotechnological relevance. However, lack of the understanding of the phosphorylation mechanism of the kinases in this pathway has limited rationally engineering the kinases in industry. Here the phosphorylation reaction mechanism of a representative kinase in the mevalonate pathway, phosphomevalonate kinase, was studied by using molecular dynamics and hybrid QM/MM methods. We find that a conserved residue (Ser106) is reorientated to anchor ATP via a stable H-bond interaction. In addition, Ser213 located on the α-helix at the catalytic site is repositioned to further approach the substrate, facilitating the proton transfer during the phosphorylation. Furthermore, we elucidate that Lys101 functions to neutralize the negative charge developed at the β-, γ-bridging oxygen atom of ATP during phosphoryl transfer. We demonstrate that the dissociative catalytic reaction occurs via a direct phosphorylation pathway. This is the first study on the phosphorylation mechanism of a mevalonate pathway kinase. The elucidation of the catalytic mechanism not only sheds light on the common catalytic mechanism of GHMP kinase superfamily, but also provides the structural basis for engineering the mevalonate pathway kinases to further exploit their applications in the production of a wide range of fine chemicals such as biofuels or pharmaceuticals