151 resultados para automatic programming


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Speeding up sequential programs on multicores is a challenging problem that is in urgent need of a solution. Automatic parallelization of irregular pointer-intensive codes, exempli?ed by the SPECint codes, is a very hard problem. This paper shows that, with a helping hand, such auto-parallelization is possible and fruitful. This paper makes the following contributions: (i) A compiler framework for extracting pipeline-like parallelism from outer program loops is presented. (ii) Using a light-weight programming model based on annotations, the programmer helps the compiler to ?nd thread-level parallelism. Each of the annotations speci?es only a small piece of semantic information that compiler analysis misses, e.g. stating that a variable is dead at a certain program point. The annotations are designed such that correctness is easily veri?ed. Furthermore, we present a tool for suggesting annotations to the programmer. (iii) The methodology is applied to autoparallelize several SPECint benchmarks. For the benchmark with most parallelism (hmmer), we obtain a scalable 7-fold speedup on an AMD quad-core dual processor. The annotations constitute a parallel programming model that relies extensively on a sequential program representation. Hereby, the complexity of debugging is not increased and it does not obscure the source code. These properties could prove valuable to increase the ef?ciency of parallel programming.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The efficient development of multi-threaded software has, for many years, been an unsolved problem in computer science. Finding a solution to this problem has become urgent with the advent of multi-core processors. Furthermore, the problem has become more complicated because multi-cores are everywhere (desktop, laptop, embedded system). As such, they execute generic programs which exhibit very different characteristics than the scientific applications that have been the focus of parallel computing in the past.
Implicitly parallel programming is an approach to parallel pro- gramming that promises high productivity and efficiency and rules out synchronization errors and race conditions by design. There are two main ingredients to implicitly parallel programming: (i) a con- ventional sequential programming language that is extended with annotations that describe the semantics of the program and (ii) an automatic parallelizing compiler that uses the annotations to in- crease the degree of parallelization.
It is extremely important that the annotations and the automatic parallelizing compiler are designed with the target application do- main in mind. In this paper, we discuss the Paralax approach to im- plicitly parallel programming and we review how the annotations and the compiler design help to successfully parallelize generic programs. We evaluate Paralax on SPECint benchmarks, which are a model for such programs, and demonstrate scalable speedups, up to a factor of 6 on 8 cores.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Data flow techniques have been around since the early '70s when they were used in compilers for sequential languages. Shortly after their introduction they were also consideredas a possible model for parallel computing, although the impact here was limited. Recently, however, data flow has been identified as a candidate for efficient implementation of various programming models on multi-core architectures. In most cases, however, the burden of determining data flow "macro" instructions is left to the programmer, while the compiler/run time system manages only the efficient scheduling of these instructions. We discuss a structured parallel programming approach supporting automatic compilation of programs to macro data flow and we show experimental results demonstrating the feasibility of the approach and the efficiency of the resulting "object" code on different classes of state-of-the-art multi-core architectures. The experimental results use different base mechanisms to implement the macro data flow run time support, from plain pthreads with condition variables to more modern and effective lock- and fence-free parallel frameworks. Experimental results comparing efficiency of the proposed approach with those achieved using other, more classical, parallel frameworks are also presented. © 2012 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A neural network based tool has been developed to assist in the process of code transformation. The tool offers advice on appropriate transformations within a knowledge-driven, semi-automatic parallelisation environment. We have identified the essential characteristics of codes relevant to loop transformations. A Kohonen network is used to discover structure in the characterised codes thus revealing new knowledge that may be brought to bear on the mapping between codes and transformations or transformation sequences. A transform selector based on this process has been developed and successfully applied to the parallelisation of sequential codes.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: