2 resultados para autocorrelation
Resumo:
A compositional multivariate approach is used to analyse regional scale soil geochemical data obtained as part of the Tellus Project generated by the Geological Survey Northern Ireland (GSNI). The multi-element total concentration data presented comprise XRF analyses of 6862 rural soil samples collected at 20cm depths on a non-aligned grid at one site per 2 km2. Censored data were imputed using published detection limits. Using these imputed values for 46 elements (including LOI), each soil sample site was assigned to the regional geology map provided by GSNI initially using the dominant lithology for the map polygon. Northern Ireland includes a diversity of geology representing a stratigraphic record from the Mesoproterozoic, up to and including the Palaeogene. However, the advance of ice sheets and their meltwaters over the last 100,000 years has left at least 80% of the bedrock covered by superficial deposits, including glacial till and post-glacial alluvium and peat. The question is to what extent the soil geochemistry reflects the underlying geology or superficial deposits. To address this, the geochemical data were transformed using centered log ratios (clr) to observe the requirements of compositional data analysis and avoid closure issues. Following this, compositional multivariate techniques including compositional Principal Component Analysis (PCA) and minimum/maximum autocorrelation factor (MAF) analysis method were used to determine the influence of underlying geology on the soil geochemistry signature. PCA showed that 72% of the variation was determined by the first four principal components (PC’s) implying “significant” structure in the data. Analysis of variance showed that only 10 PC’s were necessary to classify the soil geochemical data. To consider an improvement over PCA that uses the spatial relationships of the data, a classification based on MAF analysis was undertaken using the first 6 dominant factors. Understanding the relationship between soil geochemistry and superficial deposits is important for environmental monitoring of fragile ecosystems such as peat. To explore whether peat cover could be predicted from the classification, the lithology designation was adapted to include the presence of peat, based on GSNI superficial deposit polygons and linear discriminant analysis (LDA) undertaken. Prediction accuracy for LDA classification improved from 60.98% based on PCA using 10 principal components to 64.73% using MAF based on the 6 most dominant factors. The misclassification of peat may reflect degradation of peat covered areas since the creation of superficial deposit classification. Further work will examine the influence of underlying lithologies on elemental concentrations in peat composition and the effect of this in classification analysis.
Resumo:
Biotic interactions can have large effects on species distributions yet their role in shaping species ranges is seldom explored due to historical difficulties in incorporating biotic factors into models without a priori knowledge on interspecific interactions. Improved SDMs, which account for biotic factors and do not require a priori knowledge on species interactions, are needed to fully understand species distributions. Here, we model the influence of abiotic and biotic factors on species distribution patterns and explore the robustness of distributions under future climate change. We fit hierarchical spatial models using Integrated Nested Laplace Approximation (INLA) for lagomorph species throughout Europe and test the predictive ability of models containing only abiotic factors against models containing abiotic and biotic factors. We account for residual spatial autocorrelation using a conditional autoregressive (CAR) model. Model outputs are used to estimate areas in which abiotic and biotic factors determine species’ ranges. INLA models containing both abiotic and biotic factors had substantially better predictive ability than models containing abiotic factors only, for all but one of the four species. In models containing abiotic and biotic factors, both appeared equally important as determinants of lagomorph ranges, but the influences were spatially heterogeneous. Parts of widespread lagomorph ranges highly influenced by biotic factors will be less robust to future changes in climate, whereas parts of more localised species ranges highly influenced by the environment may be less robust to future climate. SDMs that do not explicitly include biotic factors are potentially misleading and omit a very important source of variation. For the field of species distribution modelling to advance, biotic factors must be taken into account in order to improve the reliability of predicting species distribution patterns both presently and under future climate change.