40 resultados para audio equipment
Resumo:
The technical challenges in the design and programming of signal processors for multimedia communication are discussed. The development of terminal equipment to meet such demand presents a significant technical challenge, considering that it is highly desirable that the equipment be cost effective, power efficient, versatile, and extensible for future upgrades. The main challenges in the design and programming of signal processors for multimedia communication are, general-purpose signal processor design, application-specific signal processor design, operating systems and programming support and application programming. The size of FFT is programmable so that it can be used for various OFDM-based communication systems, such as digital audio broadcasting (DAB), digital video broadcasting-terrestrial (DVB-T) and digital video broadcasting-handheld (DVB-H). The clustered architecture design and distributed ping-pong register files in the PAC DSP raise new challenges of code generation.
Resumo:
Audio scrambling can be employed to ensure confidentiality in audio distribution. We first describe scrambling for raw audio using the discrete wavelet transform (DWT) first and then focus on MP3 audio scrambling. We perform scrambling based on a set of keys which allows for a set of audio outputs having different qualities. During descrambling, the number of keys provided and the number of rounds of descrambling performed will decide the audio output quality. We also perform scrambling by using multiple keys on the MP3 audio format. With a subset of keys, we can descramble to obtain a low quality audio. However, we can obtain the original quality audio by using all of the keys. Our experiments show that the proposed algorithms are effective, fast, simple to implement while providing flexible control over the progressive quality of the audio output. The security level provided by the scheme is sufficient for protecting MP3 music content.
Resumo:
Listeners experience electroacoustic music as full of significance and meaning, and they experience spatiality as one of the factors contributing to its meaningfulness. If we want to understand spatiality in electroacoustic music, we must understand how the listener’s mental processes give rise to the experience of meaning. In electroacoustic music as in everyday life, these mental processes unite the peripheral auditory system with human spatial cognition. In the discussion that follows we consider a range of the listener’s mental processes relating space and meaning from the perceptual attributes of spatial imagery to the spatial reference frames for places and navigation. When considering multichannel loudspeaker systems in particular, an important part of the discussion is focused on the distinctive and idiomatic ways in which this particular mode of sound production contributes to and situates meaning. These idiosyncrasies include the phenomenon of image dispersion, the important consequences of the precedence effect and the influence of source characteristics on spatial imagery. These are discussed in close relation to the practicalities of artistic practice and to the potential for artistic meaning experienced by the listener.