50 resultados para atom surface collisions
Resumo:
We demonstrate a combined magneto-optical trap and imaging system that is suitable for the investigation of cold atoms near surfaces. In particular, we are able to trap atoms close to optically scattering surfaces and to image them with an excellent signal-to-noise ratio. We also demonstrate a simple magneto-optical atom cloud launching method. We anticipate that this system will be useful for a range of experimental studies of novel atom-surface interactions and atom trap miniaturization.
Resumo:
We have performed a kinematically complete experiment and calculations on single ionization in 100 MeV/amu C6+ + He collisions. For electrons ejected into the scattering plane (defined by the initial and final projectile momentum vectors) our first- and higher-order calculations are in good agreement with the data. In the plane perpendicular to the scattering plane and containing the initial projectile axis a strong forward-backward asymmetry is observed. In this plane both the first-order and the higher-order calculations do not provide good agreement neither with the data nor amongst each other.
Resumo:
New results are presented for Ps(1s) scattering by H(1s), He(1(1)S) and Li(2s). Calculations have been performed in a coupled state framework, usually employing pseudostates, and allowing for excitation of both the Ps and the atom. In the Ps(1s)-H(1s) calculations the H- formation channel has also been included using a highly accurate H- wave function. Resonances resulting from unstable states in which the positron orbits H- have been calculated and analysed. The new Ps(1s)-He(1(1)S) calculations still fail to resolve existing discrepancies between theory and experiment at very low energies. The possible importance of the Ps(-) formation channel in all three collision systems is discussed. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Structural and magnetic properties of thin Mn films on the Fe(001) surface have been investigated by a combination of photoelectron spectroscopy and computer simulation in the temperature range 300 Kless than or equal toTless than or equal to750 K. Room-temperature as deposited Mn overlayers are found to be ferromagnetic up to 2.5-monolayer (ML) coverage, with a magnetic moment parallel to that of the iron substrate. The Mn atomic moment decreases with increasing coverage, and thicker samples (4-ML and 4.5-ML coverage) are antiferromagnetic. Photoemission measurements performed while the system temperature is rising at constant rate (dT/dtsimilar to0.5 K/s) detect the first signs of Mn-Fe interdiffusion at T=450 K, and reveal a broad temperature range (610 Kless than or equal toTless than or equal to680 K) in which the interface appears to be stable. Interdiffusion resumes at Tgreater than or equal to680 K. Molecular dynamics and Monte Carlo simulations allow us to attribute the stability plateau at 610 Kless than or equal toTless than or equal to680 K to the formation of a single-layer MnFe surface alloy with a 2x2 unit cell and a checkerboard distribution of Mn and Fe atoms. X-ray-absorption spectroscopy and analysis of the dichroic signal show that the alloy has a ferromagnetic spin structure, collinear with that of the substrate. The magnetic moments of Mn and Fe atoms in the alloy are estimated to be 0.8mu(B) and 1.1mu(B), respectively.
Resumo:
Particle and photon polarization phenomena occurring in collisions of relativistic ions with matter have recently attracted particular interest. Investiga- tions of the emitted characteristic x-ray and radiative electron capture radiation has been found to be a versatile tool for probing our present understanding of the dynamics of particles in extreme electromagnetic ¯elds. Owing to the progress in x-ray detector technology, in addition, accurate measurements of the linear po- larization for hard x-ray photons as well as the determination of the polarization plane became possible. This new diagnostic tool enables one today to derive in- formation about the polarization of the ion beams from the photon polarization features of the radiative electron capture process.