6 resultados para astrocytoma
Resumo:
Early local invasion by astrocytoma. cells results in tumor recurrence even after apparent total surgical resection, leading to the poor prognosis associated with malignant astrocytomas. Proteolytic enzymes have been implicated in facilitating tumor cell invasion and the current study was designed to characterize the expression of the cysteine proteinase cathepsin S (CatS) in astrocytomas and examine its potential role in invasion. Immunohistochemical analysis of biopsies demonstrated that CatS was expressed in astrocytoma cells but absent from normal astrocytes, oligodendrocytes, neurones and endothelial cells. Microglial cells and macrophages were also positive. Assays of specific activity in 59 astrocytoma biopsies confirmed CatS expression and in addition demonstrated that the highest levels of activity were expressed in grade IV tumors. CatS activity was also present in astrocytoma cells in vitro and the extracellular levels of activity were highest in cultures derived from grade IV tumors. In vitro invasion assays were carried out using the U251MG cell line and the invasion rate was reduced by up to 61% in the presence of the selective CatS inhibitor 4-Morpholineurea-LeuHomoPhe-vinylsulphone. We conclude that CatS expression is up-regulated in astrocytoma. cells and provide evidence for a potential role for CatS in invasion.
Resumo:
Cysteine proteinases have been implicated in astrocytoma invasion. We recently demonstrated that cathepsin S (CatS) expression is up-regulated in astrocytomas and provided evidence for a potential role in astrocytoma invasion (Flannery et al., Am J Path 2003;163(1):175–82). We aimed to evaluate the significance of CatS in human astrocytoma progression and as a prognostic marker. Frozen tissue homogenates from 71 patients with astrocytomas and 3 normal brain specimens were subjected to ELISA analyses. Immunohistochemical analysis of CatS expression was performed on 126 paraffin-embedded tumour samples. Fifty-one astrocytoma cases were suitable for both frozen tissue and paraffin tissue analysis. ELISA revealed minimal expression of CatS in normal brain homogenates. CatS expression was increased in grade IV tumours whereas astrocytoma grades I–III exhibited lower values. Immunohistochemical analysis revealed a similar pattern of expression. Moreover, high-CatS immunohistochemical scores in glioblastomas were associated with significantly shorter survival (10 vs. 5 months, p = 0.014). With forced inclusion of patient age, radiation dose and Karnofsky score in the Cox multivariate model, CatS score was found to be an independent predictor of survival. CatS expression in astrocytomas is associated with tumour progression and poor outcome in glioblastomas. CatS may serve as a useful prognostic indicator and potential target for anti-invasive therapy.
Resumo:
Microdialysis enables the chemistry of extracellular ?uid in body tissues to be measured. Extracellular proteases such as the cysteine protease, cathepsin S (CatS), are thought to facilitate astrocytoma invasion. Microdialysates obtained from human brain tumoursin vivo were subjected to cathepsin S activity and ELISA assays. Cathepsin S ELISA expression was detected in ?ve out of 10 tumour microdialysates, while activity was detected in ?ve out of 11 tumour microdialysates. Cathepsin S expression was also detected in microdialysate from the normal brain control although no activity was found in the same sample. While some re?nements to the technique are necessary, the authors demonstrate the feasibility and safety of microdialysis in human astrocytomasin vivo. Characterisation of the extracellular environment of brain tumoursin vivo using microdialysis may be a useful tool to identify the protease pro?le of brain tumours.
Resumo:
The mechanism by which extracellular ADP ribose (ADPr) increases intracellular free Ca2+ concentration ([Ca2+](i)) remains unknown. We measured [Ca2+](i) changes in fura-2 loaded rat insulinoma INS-1E cells, and in primary beta-cells from rat and human. A phosphonate analogue of ADPr (PADPr) and 8-Bromo-ADPr (8Br-ADPr) were synthesized. ADPr increased [Ca2+](i) in the form of a peak followed by a plateau dependent on extracellular Ca2+. NAD(+), cADPr, PADPr, 8Br-ADPr or breakdown products of ADPr did not increase [Ca2+](i). The ADPr-induced [Ca2+](i) increase was not affected by inhibitors of TRPM2, but was abolished by thapsigargin and inhibited when phospholipase C and IP3 receptors were inhibited. MRS 2179 and MRS 2279, specific inhibitors of the purinergic receptor P2Y1, completely blocked the ADPrinduced [Ca2+](i) increase. ADPr increased [Ca2+](i) in transfected human astrocytoma cells (1321N1) that express human P2Y1 receptors, but not in untransfected astrocytoma cells. We conclude that ADPr is a specific agonist of P2Y1 receptors. (c) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
During early neurodevelopment, asymmetric segregation of Numb in mitotic progenitor cells influences the fate of daughter cells, whereby one daughter retains the progenitor phenotype while the other proceeds along a differentiation pathway. Numb has also been reported to function as a tumor suppressor in breast cancers and medulloblastomas. Given its role in maintaining neural progenitor pools in animal models and its reported role as a tumor suppressor, Numb could potentially contribute to astrocytoma oncogenesis. We characterized Numb expression in both human astrocytoma tissue samples and glioblastoma cell lines. We found that Numb is expressed in all grades of astrocytomas, being predominantly cytoplasmic in higher-grade astrocytomas but nuclear in pilocytic astrocytomas. Numb is also present in normal neurons, but not in normal astrocytes. In cultured glioblastoma cells, Numb concentrates in the perinuclear region and process tips. Numb expression in astrocytomas recapitulates that of progenitor cells during neurodevelopment, and suggests a role for Numb in astrocytoma oncogenesis.
Resumo:
Astrocytic tumors are the most common intracranial neoplasms. Their prognoses correlate with a conventional morphological grading system that suffers from diagnostic subjectivity and hence, inter-observer inconsistency. A molecular marker that provides an objective reference for classification and prognostication of astrocytic tumors would be useful in diagnostic pathology. RhoA, a GTPase protein involved in cell migration and adhesion has been shown to be upregulated in a variety of human cancers. Based on direct analysis of clinical materials, our study demonstrates increased expression of RhoA in high-grade astrocytomas. This observation may be relevant to astrocytoma biology and the development of potential therapeutics against high-grade astrocytomas. Of more immediate consequence, utilization of this marker may aid in the routine pathological grading (and hence prognostication) of astrocytomas. (c) 2006 Elsevier Ireland Ltd. All rights reserved.