64 resultados para aquatic bodies


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Over the past few decades, there has been an increased frequency and duration of cyanobacterial Harmful Algal Blooms (HABs) in freshwater systems globally. These can produce secondary metabolites called cyanotoxins, many of which are hepatotoxins, raising concerns about repeated exposure through ingestion of contaminated drinking water or food or through recreational activities such as bathing/ swimming. An ultra-performance liquid chromatography tandem mass spectrometry (UPLC–MS/MS) multi-toxin method has been developed and validated for freshwater cyanotoxins; microcystins-LR, -YR, -RR, -LA, -LY and -LF, nodularin, cylindrospermopsin, anatoxin-a and the marine diatom toxin domoic acid. Separation was achieved in around 9 min and dual SPE was incorporated providing detection limits of between 0.3 and 5.6 ng/L of original sample. Intra- and inter-day precision analysis showed relative
standard deviations (RSD) of 1.2–9.6% and 1.3–12.0% respectively. The method was applied to the analysis of aquatic samples (n = 206) from six European countries. The main class detected were the hepatotoxins; microcystin-YR (n = 22), cylindrospermopsin (n = 25), microcystin-RR (n = 17), microcystin-LR (n = 12), microcystin-LY (n = 1), microcystin-LF (n = 1) and nodularin (n = 5). For microcystins, the levels detected ranged from 0.001 to 1.51 mg/L, with two samples showing combined levels above the guideline set by the WHO of 1 mg/L for microcystin-LR. Several samples presented with multiple toxins indicating the potential for synergistic effects and possibly enhanced toxicity. This is the first published pan European survey of freshwater bodies for multiple biotoxins, including two identified for the first time; cylindrospermopsin in Ireland and nodularin in Germany, presenting further incentives for improved monitoring and development of strategies to mitigate human exposure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The physics of the plume-induced shock and separation, particularly at high plume to exit pressure ratios with and without shock-turbulent boundary-layer control methods, were studied using computational techniques. Mass-averaged Navier-Stokes equations with a two-equation turbulence model were solved by using a fully implicit finite volume scheme and time.marching algorithm. The control methodologies for shock interactions included a porous tail and a porous extension attached at the nozzle exit or trailing edge. The porous tail produced a weaker shock and fixed the shock position on the control surface. The effect of the porous extension on shock interactions was mainly to restrain the plume from strongly underexpanding during a change in flight conditions. These techniques could give an additional dimension to the design and control of supersonic missiles.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: