2 resultados para anomalous user activity


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we present an Orientation Free Adaptive Step Detection (OFASD) algorithm for deployment in a smart phone for the purposes of physical activity monitoring. The OFASD algorithm detects individual steps and measures a user’s step counts using the smart phone’s in-built accelerometer. The algorithm considers both the variance of an individual’s walking pattern and the orientation of the smart phone. Experimental validation of the algorithm involved the collection of data from 10 participants using five phones (worn at five different body positions) whilst walking on a treadmill at a controlled speed for periods of 5 min. Results indicated that, for steps detected by the OFASD algorithm, there were no significant differences between where the phones were placed on the body (p > 0.05). The mean step detection accuracies ranged from 93.4 % to 96.4 %. Compared to measurements acquired using existing dedicated commercial devices, the results demonstrated that using a smart phone for monitoring physical activity is promising, as it adds value to an accepted everyday accessory, whilst imposing minimum interaction from the user. The algorithm can be used as the underlying component within an application deployed within a smart phone designed to promote self-management of chronic disease where activity measurement is a significant factor, as it provides a practical solution, with minimal requirements for user intervention and less constraints than current solutions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Introduction: Abundant evidence shows that regular physical activity (PA) is an effective strategy for preventing obesity in people of diverse socioeconomic status (SES) and racial groups. The proportion of PA performed in parks and how this differs by proximate neighborhood SES has not been thoroughly investigated. The present project analyzes online public web data feeds to assess differences in outdoor PA by neighborhood SES in St. Louis, MO, USA.
Methods: First, running and walking routes submitted by users of the website MapMyRun.com were downloaded. The website enables participants to plan, map, record, and share their exercise routes and outdoor activities like runs, walks, and hikes in an online database. Next, the routes were visually illustrated using geographic information systems. Thereafter, using park data and 2010 Missouri census poverty data, the odds of running and walking routes traversing a low-SES neighborhood, and traversing a park in a low-SES neighborhood were examined in comparison to the odds of routes traversing higher-SES neighborhoods and higher-SES parks.
Results: Results show that a majority of running and walking routes occur in or at least traverse through a park. However, this finding does not hold when comparing low-SES neighborhoods to higher-SES neighborhoods in St. Louis. The odds of running in a park in a low-SES neighborhood were 54% lower than running in a park in a higher-SES neighborhood (OR = 0.46, CI = 0.17-1.23). The odds of walking in a park in a low-SES neighborhood were 17% lower than walking in a park in a higher-SES neighborhood (OR = 0.83, CI = 0.26-2.61).
Conclusion: The novel methods of this study include the use of inexpensive, unobtrusive, and publicly available web data feeds to examine PA in parks and differences by neighborhood SES. Emerging technologies like MapMyRun.com present significant advantages to enhance tracking of user-defined PA across large geographic and temporal settings.