126 resultados para analytical formulation


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Axisymmetric consolidation is a classical boundary value problem for geotechnical engineers. Under some circumstances an analysis in which the changes in pore pressure, effective stress and displacement can be uncoupled from each other is sufficient, leading to a Terzaghi formulation of the axisymmetric consolidation equation in terms of the pore pressure. However, representation of the Mandel-Cryer effect usually requires more complex, coupled, Biot formulations. A new coupled formulation for the plane strain, axisymmetric consolidation problem is presented for small, linear elastic deformations. A single, easily evaluated parameter couples changes in pore pressure to changes in effective stress, and the resulting differential equation for pore pressure dissipation is very similar to Terzaghi’s classic formulation. The governing equations are then solved using finite differences and the consolidation of a solid infinite cylinder analysed, calculating the variation with time and with radius of the excess pore pressure and the radial displacement. Comparison with a previously published semi-analytical solution indicates that the formulation successfully embodies the Mandel-Cryer effect.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Self-compacting concrete (SCC) flows into place and around obstructions under its own weight to fill the formwork completely and self-compact without any segregation and blocking. Elimination of the need for compaction leads to better quality concrete and substantial improvement of working conditions. This investigation aimed to show possible applicability of genetic programming (GP) to model and formulate the fresh and hardened properties of self-compacting concrete (SCC) containing pulverised fuel ash (PFA) based on experimental data. Twenty-six mixes were made with 0.38 to 0.72 water-to-binder ratio (W/B), 183–317 kg/m3 of cement content, 29–261 kg/m3 of PFA, and 0 to 1% of superplasticizer, by mass of powder. Parameters of SCC mixes modelled by genetic programming were the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength at 7, 28 and 90 days. GP is constructed of training and testing data using the experimental results obtained in this study. The results of genetic programming models are compared with experimental results and are found to be quite accurate. GP has showed a strong potential as a feasible tool for modelling the fresh properties and the compressive strength of SCC containing PFA and produced analytical prediction of these properties as a function as the mix ingredients. Results showed that the GP model thus developed is not only capable of accurately predicting the slump flow, JRing combined to the Orimet, JRing combined to cone, and the compressive strength used in the training process, but it can also effectively predict the above properties for new mixes designed within the practical range with the variation of mix ingredients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This study reports the use of texture profile analysis (TPA) to mechanically characterize polymeric, pharmaceutical semisolids containing at least one bioadhesive polymer and to determine interactions between formulation components. The hardness, adhesiveness, force per unit time required for compression (compressibility), and elasticity of polymeric, pharmaceutical semisolids containing polycarbophil (1 or 5% w/w), polyvinylpyrrolidone (3 or 5% w/w), and hydroxyethylcellulose (3, 5, or 10% w/w) in phosphate buffer (pH 6.8) were determined using a texture analyzer in the TPA mode (compression depth 15 mm, compression rate 8 mm s(-1) 15 s delay period). Increasing concentrations of polycarbophil, poly vinylpyrrolidone, and hydroxyethylcellulose significantly increased product hardness, adhesiveness, and compressibility but decreased product elasticity. Statistically, interactions between polymeric formulation components were observed within the experimental design and were probably due to relative differences in the physical states of polyvinylpyrrolidone and polycarbophil in the formulations, i.e., dispersed/dissolved and unswollen/swollen, respectively. Increased product hardness and compressibility were possibly due to the effects of hydroxyethylcellulose, polyvinylpyrrolidone, and polycarbophil on the viscosity of the formulations. Increased adhesiveness was related to the concentration and, more importantly, to the physical state of polycarbophil. Decreased product elasticity was due to the increased semisolid nature of the product. TPA is a rapid, straightforward analytical technique that may be applied to the mechanical characterization of polymeric, pharmaceutical semisolids. It provides a convenient means to rapidly identify physicochemical interactions between formulation components. (C) 1996 John Wiley & Sons, Inc.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper addresses the analytical solution of the mixed-mode bending (MMB) problem. The first published solutions used a load separation in pure mode I and mode II and were applied for a crack length less than the beam half-span, a <= L. In later publications, the same mode separation was used in deriving the analytical solution for crack lengths bigger than the beam half-span, a > L. In this paper it is shown that this mode separation is not valid when a > L and in some cases may lead to very erroneous results. The correct mode separation and the corresponding analytical solutions, when a > L, are presented. Results, of force vs. displacement and force vs. crack length graphs, obtained using the existing formulation and the corrected formulation are compared. A finite element solution, which does not use mode separation, is also presented

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The eigenphase formulation of Blatt and Biedenharn is applied to fine-structure transitions in *P atoms colliding with ‘S perturbers. Consideration is given to the limit of weak spin-orbit interaction. If the eigenphases are equal to the phaseshifts for elastic scattering by the molecular potentials then the expression for the total cross section reduces to the expression derived in the elastic approximation. However, a numerical comparison for the Li(2p ’P) + He(’S) system shows that the elastic molecular phaseshifts are not good approximations to the eigenphases. Hence the elastic approximation cannot be reliable.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to mathematically characterize the effects of defined experimental parameters (probe speed and the ratio of the probe diameter to the diameter of sample container) on the textural/mechanical properties of model gel systems. In addition, this study examined the applicability of dimensional analysis for the rheological interpretation of textural data in terms of shear stress and rate of shear. Aqueous gels (pH 7) were prepared containing 15% w/w poly(methylvinylether-co-maleic anhydride) and poly(vinylpyrrolidone) (PVP) (0, 3, 6, or 9% w/w). Texture profile analysis (TPA) was performed using a Stable Micro Systems texture analyzer (model TA-XT 2; Surrey, UK) in which an analytical probe was twice compressed into each formulation to a defined depth (15 mm) and at defined rates (1, 3, 5, 8, and 10 mm s-1), allowing a delay period (15 s) between the end of the first and beginning of the second compressions. Flow rheograms were performed using a Carri-Med CSL2-100 rheometer (TA Instruments, Surrey, UK) with parallel plate geometry under controlled shearing stresses at 20.0°?±?0.1°C. All formulations exhibited pseudoplastic flow with no thixotropy. Increasing concentrations of PVP significantly increased formulation hardness, compressibility, adhesiveness, and consistency. Increased hardness, compressibility, and consistency were ascribed to enhanced polymeric entanglements, thereby increasing the resistance to deformation. Increasing probe speed increased formulation hardness in a linear manner, because of the effects of probe speed on probe displacement and surface area. The relationship between formulation hardness and probe displacement was linear and was dependent on probe speed. Furthermore, the proportionality constant (gel strength) increased as a function of PVP concentration. The relationship between formulation hardness and diameter ratio was biphasic and was statistically defined by two linear relationships relating to diameter ratios from 0 to 0.4 and from 0.4 to 0.563. The dramatically increased hardness, associated with diameter ratios in excess of 0.4, was accredited to boundary effects, that is, the effect of the container wall on product flow. Using dimensional analysis, the hardness and probe displacement in TPA were mathematically transformed into corresponding rheological parameters, namely shearing stress and rate of shear, thereby allowing the application of the power law (??=?k?n) to textural data. Importantly, the consistencies (k) of the formulations, calculated using transformed textural data, were statistically similar to those obtained using flow rheometry. In conclusion, this study has, firstly, characterized the relationships between textural data and two key instrumental parameters in TPA and, secondly, described a method by which rheological information may be derived using this technique. This will enable a greater application of TPA for the rheological characterization of pharmaceutical gels and, in addition, will enable efficient interpretation of textural data under different experimental parameters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study described the drug release, rheological (dynamic and flow) and textural/mechanical properties of a series of formulations composed of 15% w/w polymethylvinylether-co-maleic anhydride (PMVE-MA), 0-9% w/w polyvinylpyrrolidone (PVP) and containing 1-5% w/w tetracycline hydrochloride, designed for the treatment of periodontal disease. All formulations exhibited pseudoplastic flow with minimal thixotropy. Increasing the concentration of PVP sequentially increased the zero-rate viscosity (derived from the Cross model) and the hardness and compressibility of the formulations (derived from texture profile analysis). These affects may be accredited to increased polymer entanglement and, in light of the observed synergy between the two polymers with respect to their textural and rheological properties, interaction between PVP and PMVE-MA. Increasing the concentration of PVP increased the storage and loss moduli yet decreased the loss tangent of all formulations, indicative of increased elastic behaviour. Synergy between the two polymers with respect to their viscoelastic properties was observed. Increased adhesiveness, associated with increased concentrations of PVP was ascribed to the increasing bioadhesion and tack of the formulations. The effect of increasing drug concentration on the rheological and textural properties was dependent on PVP concentration. At lower concentrations (0, 3% w/w) no effect was observed whereas, in the presence of 9% w/w PVP, increasing drug concentration increased formulation elasticity, zero rate viscosity, hardness and compressibility. These observations were ascribed to the greater mass of suspended drug in formulations containing the highest concentration of PVP. Drug release from formulations containing 6 and 9% PVP (and 5% w/w drug) was prolonged and swelling/diffusion controlled. Based on the drug release, rheological and textural properties, it is suggested that the formulation containing 15% w/w PMVE-MA, 6% w/w PVP and tetracycline hydrochloride (5% w/w) may be useful for the treatment of periodontal disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study describes the formulation, characterisation and preliminary clinical evaluation of mucoadhesive, semi-solid formulations containing hydroxyethylcellulose (HEC, 1-5%, w/w), polyvinylpyrrolidine (PVP, 2 or 3%, w/w), poly carbophil (PC, 1 or 3%, w/w) and tetracycline (5%, w/w, as the hydrochloride). Each formulation was characterised in terms of drug release, hardness, compressibility, adhesiveness (using a texture analyser in texture profile analysis mode), syringeability (using a texture analyser in compression mode) and adhesion to a mucin disc (measured as a detachment force using the texture analyser in tensile mode). The release exponent for the formulations ranged from 0.78+/-0.02 to 1.27+/-0.07, indicating that drug release was non-diffusion controlled. Increasing the concentrations of each polymeric component significantly increased the time required for 10 and 30% release of the original mass of tetracycline, due to both increased viscosity and, additionally, the unique swelling properties of the formulations. Increasing concentrations of each polymeric component also increased the hardness, compressibility, adhesiveness, syringeability and mucoadhesion of the formulations. The effects on product hardness, compressibility and syringeability may be due to increased product viscosity and, hence, increased resistance to compression. Similarly, the effects of these polymers on adhesiveness/mucoadhesion highlight their mucoadhesive nature and, importantly, the effects of polymer state (particularly PC) on these properties. Thus, in formulations where the neutralisation of PC was maximally suppressed, adhesiveness and mucoadhesion were also maximal. Interestingly, statistical interactions were primarily observed between the effects of HEC and PC on drug release, mechanical and mucoadhesive properties. These were explained by the effects of HEC on the physical state of PC, namely swollen or unswollen. In the preliminary clinical evaluation, a formulation was selected that offered an appropriate balance of the above physical properties and contained 3% HEC, 3% PVP and 1% PC, in addition to tetracycline 5% (as the hydrochloride). The clinical efficacy of this (test) formulation was compared to an identical tetracycline-devoid (control) formulation in nine periodontal pockets (greater than or equal to 5 mm depth). One week following administration of the test formulation, there was a significant improvement in periodontal health as identified by reduced numbers of sub-gingival microbial pathogens. Therefore, it can be concluded that, when used in combination with mechanical plaque removal, the tetracycline-containing semi-solid systems described in this study would augment such therapy by enhancing the removal of pathogens, thus improving periodontal health. (C) 2000 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Much of the interest in sustainable cities relates to the inexorable rise in the demand for car travel and the contribution that certain urban forms and land-use relationships can make to reducing energy consumption. Indeed, this demand is fuelled more by increased spatial separation of homes and workplaces, shops and schools than by any rise in trip making. This paper evaluates recent efforts to integrate land-use planning and transportation policy in the Belfast Metropolitan Area by reviewing the policy formulation process at both a regional and city scale. The paper suggests that considerable progress has been made in integrating these two areas of public policy, both institutionally and conceptually. However, concerns are expressed that the rhetoric of sustainability may prove difficult to translate into implementation, leading to a further dislocation of land-use and transportation.

Relevância:

20.00% 20.00%

Publicador: