121 resultados para ammassi galassie galaxy cluster
Resumo:
We report on our discovery and observations of the Pan-STARRS1 supernova (SN) PS1-12sk, a transient with properties that indicate atypical star formation in its host galaxy cluster or pose a challenge to popular progenitor system models for this class of explosion. The optical spectra of PS1-12sk classify it as a Type Ibn SN (c.f. SN 2006jc), dominated by intermediate-width (3x10^3 km/s) and time variable He I emission. Our multi-wavelength monitoring establishes the rise time dt = 9-23 days and shows an NUV-NIR SED with temperature > 17x10^3 K and a peak rise magnitude of Mz = -18.9 mag. SN Ibn spectroscopic properties are commonly interpreted as the signature of a massive star (17 - 100 M_sun) explosion within a He-enriched circumstellar medium. However, unlike previous Type Ibn supernovae, PS1-12sk is associated with an elliptical brightest cluster galaxy, CGCG 208-042 (z = 0.054) in cluster RXC J0844.9+4258. The expected probability of an event like PS1-12sk in such environments is low given the measured infrequency of core-collapse SNe in red sequence galaxies compounded by the low volumetric rate of SN Ibn. Furthermore, we find no evidence of star formation at the explosion site to sensitive limits (Sigma Halpha
Resumo:
The visible matter in the universe is turbulent and magnetized. Turbulence in galaxy clusters is produced by mergers and by jets of the central galaxies and believed responsible for the amplification of magnetic fields. We report on experiments looking at the collision of two laser-produced plasma clouds, mimicking, in the laboratory, a cluster merger event. By measuring the spectrum of the density fluctuations, we infer developed, Kolmogorov-like turbulence. From spectral line broadening, we estimate a level of turbulence consistent with turbulent heating balancing radiative cooling, as it likely does in galaxy clusters. We show that the magnetic field is amplified by turbulent motions, reaching a nonlinear regime that is a precursor to turbulent dynamo. Thus, our experiment provides a promising platform for understanding the structure of turbulence and the amplification of magnetic fields in the universe.
Resumo:
We present photometric and spectroscopic observations of SN 2013fc, a bright type II supernova (SN) in a circumnuclear star-forming ring in the luminous infrared galaxy ESO 154-G010, observed as part of the Public ESO Spectroscopic Survey of Transient Objects. SN 2013fc is both photometrically and spectroscopically similar to the well-studied type IIn SN 1998S and to the bright type II-L SN 1979C. It exhibits an initial linear decline, followed by a short plateau phase and a tail phase with a decline too fast for 56Co decay with full γ -ray trapping. Initially, the spectrum was blue and featureless. Later on, a strong broad (~8000 km s-1) H α emission profile became prominent. We apply a STARLIGHT stellar population model fit to the SN location (observed when the SN had faded) to estimate a high extinction of AV = 2.9 ± 0.2 mag and an age of 10+3 -2 Myr for the underlying cluster.We compare the SN to SNe 1998S and 1979C and discuss its possible progenitor star considering the similarities to these events. With a peak brightness of B = -20.46 ± 0.21 mag, SN 2013fc is 0.9 mag brighter than SN 1998S and of comparable brightness to SN 1979C.We suggest that SN 2013fc was consistent with a massive red supergiant (RSG) progenitor. Recent mass loss probably due to a strong RSG wind created the circumstellar matter illuminated through its interaction with the SN ejecta. We also observe a near-infrared excess, possibly due to newly condensed dust.
Resumo:
High- resolution UVES/ VLT spectra of B 12, an extreme pole- on Be star in the SMC cluster NGC 330, have been analysed using non-LTE model atmospheres to obtain its chemical composition relative to the SMC standard star AV304. We find a general underabundance of metals which can be understood in terms of an extra contribution to the stellar continuum due to emission from a disk which we estimate to be at the similar to 25% level. When this is corrected for, the nitrogen abundance for B12 shows no evidence of enhancement by rotational mixing as has been found in other non-Be B-type stars in NGC 330, and is inconsistent with evolutionary models which include the effects of rotational mixing. A second Be star, NGC330-B 17, is also shown to have no detectable nitrogen lines. Possible explanations for the lack of rotational mixing in these rapidly rotating stars are discussed, one promising solution being the possibility that magnetic fields might inhibit rotational mixing.
Resumo:
We present model atmosphere analyses of high resolution Keck and VLT optical spectra for three evolved stars in globular clusters, viz. ZNG-1 in M 10, ZNG-1 in M 15 and ZNG-1 in NGC 6712. The derived atmospheric parameters and chemical compositions confirm the programme stars to be in the post- Asymptotic Giant Branch (post-AGB) evolutionary phase. Differential abundance analyses reveal CNO abundance patterns in M 10 ZNG-1, and possibly M 15 ZNG-1, which Suggest that both objects may have evolved off the AGB before the third dredge-up occurred. The abundance pattern of these stars is similar to the third class of optically, bright post-AGB objects discussed by van Winckel (1997). Furthermore, M 10 ZNG-1 exhibits a large C underabundance (with Delta[C/O] similar to -1.6 dex), typical of other hot post-AGB objects. Differential Delta[alpha/Fe] abundance ratios in both M 10 ZNG-1 and NGC 6712 ZNG-1 are found to be approximately 0.0 dex, with the Fe abundance of the former being in disagreement with the cluster metallicity of M 10. Given that the Fe absorption features in both M 10 ZNG-1 and NGC6712 ZNG-1 are well observed and reliably modelled, we believe that these differential Fe abundance estimates to be secure. However, our Fe abundance is difficult to explain in terms of previous evolutionary processes that Occur oil both the Horizontal Branch and the AGB.
Resumo:
We propose an experimental implementation of a quantum game algorithm in a hybrid scheme combining the quantum circuit approach and the cluster state model. An economical cluster configuration is suggested to embody a quantum version of the Prisoners' Dilemma. Our proposal is shown to be within the experimental state of the art and can be realized with existing technology. The effects of relevant experimental imperfections are also carefully examined.
Resumo:
We provide an analysis of basic quantum-information processing protocols under the effect of intrinsic nonidealities in cluster states. These nonidealities are based on the introduction of randomness in the entangling steps that create the cluster state and are motivated by the unavoidable imperfections faced in creating entanglement using condensed-matter systems. Aided by the use of an alternative and very efficient method to construct cluster-state configurations, which relies on the concatenation of fundamental cluster structures, we address quantum-state transfer and various fundamental gate simulations through noisy cluster states. We find that a winning strategy to limit the effects of noise is the management of small clusters processed via just a few measurements. Our study also reinforces recent ideas related to the optical implementation of a one-way quantum computer.
Resumo:
High resolution spectra of seven early B-type giant/supergiant stars in the SMC cluster NGC330 are analysed to obtain their chemical compositions relative to SMC field and Galactic B-type stars. It is found that all seven stars are nitrogen rich with an abundance approximately 1.3 dex higher than an SMC main- sequence field B-type star, AV304. They also display evidence for deficiencies in carbon, but other metals have abundances typical of the SMC. Given the number of B-type stars with low projected rotational velocities in NGC330 (all our targets have v sin i <50 km s(-1)), we suggest that it is unlikely that the stars in our sample are seen almost pole-on, but rather that they are intrinsically slow rotators. Furthermore, none of our objects displays any evidence of significant Balmer emission excluding the possibility that these are Be stars observed pole-on. Comparing these results with the predictions of stellar evolution models including the effects of rotationally induced mixing, we conclude that while the abundance patterns may indeed be reproduced by these models, serious discrepancies exist. Most importantly, models including the effects of initially large rotational velocities do not reproduce the observed range of effective temperatures of our sample, nor the currently observed rotational velocities. Binary models may be able to produce stars in the observed temperature range but again may be incapable of producing suitable analogues with low rotational velocities. We also discuss the clear need for stellar evolution calculations employing the correct chemical mix of carbon, nitrogen and oxygen for the SMC.