9 resultados para alternative protein
Resumo:
Crizotinib, a dual anaplastic lymphoma kinase (ALK) and mesenchymal-epithelial transition (MET) tyrosine kinase inhibitor, is currently being evaluated for the treatment of neuroblastoma. Its effects are thought to be mediated mainly via its activity against ALK. Although MET genomic/protein expression status might conceivably affect crizotinib efficacy, this issue has hitherto not received attention in neuroblastomas.
Resumo:
An alternative method for monitoring protein-protein interactions in Saccharomyces cerevisiae has been developed. It relies on the ability of two fragments of enhanced green fluorescent protein (EGFP) to reassemble and fluoresce when fused to interacting proteins. Since this fluorescence can be detected in living cells, simultaneous detection and localisation of interacting pairs is possible. DNA sequences encoding N- and C-terminal EGFP fragments flanked by sequences from the genes of interest were transformed into S. cerevisicie JPY5 cells and homologous recombination into the genome verified by PCR. The system was evaluated by testing known interacting proteins: labelling of the phosphofructokinase subunits, Pfk1p and Pfk2p, with N- and C-terminal EGFP fragments, respectively, resulted in green fluorescence in the cytoplasm. The system works in other cellular compartments: labelling of Idh1p and Idh2p, (mitochondrial matrix), Sdh3p and Sdh4p (mitochondrial membrane) and Pap2p and Mtr4p (nucleus) all resulted in fluorescence in the appropriate cellular compartment. (c) 2008 Elsevier Inc. All rights reserved.
Resumo:
The global increase in measles vaccination has resulted in a significant reduction of measles mortality. The standard route of administration for the live-attenuated measles virus (MV) vaccine is subcutaneous injection, although alternative needle-free routes, including aerosol delivery, are under investigation. In vitro, attenuated MV has a much wider tropism than clinical isolates, as it can use both CD46 and CD150 as cellular receptors. To compare the in vivo tropism of attenuated and pathogenic MV, we infected cynomolgus macaques with pathogenic or attenuated recombinant MV expressing enhanced green fluorescent protein (GFP) (strains IC323 and Edmonston, respectively) via the intratracheal or aerosol route. Surprisingly, viral loads and cellular tropism in the lungs were similar for the two viruses regardless of the route of administration, and CD11c-positive cells were identified as the major target population. However, only the pathogenic MV caused significant viremia, which resulted in massive virus replication in B and T lymphocytes in lymphoid tissues and viral dissemination to the skin and the submucosa of respiratory epithelia. Attenuated MV was rarely detected in lymphoid tissues, and when it was, only in isolated infected cells. Following aerosol inhalation, attenuated MV was detected at early time points in the upper respiratory tract, suggesting local virus replication. This contrasts with pathogenic MV, which invaded the upper respiratory tract only after the onset of viremia. This study shows that despite in vitro differences, attenuated and pathogenic MV show highly similar in vivo tropism in the lungs. However, systemic spread of attenuated MV is restricted.
Resumo:
Semicarbazide (SEM) was considered to be a characteristic protein-bound side-chain metabolite of the banned veterinary drug nitrofurazone and used as a marker of nitrofurazone abuse. It was recently discovered that SEM can arise in food from sources other than nitrofurazone. This uncertainty over the source of SEM may be overcome if alternative markers specific to tissue-bound nitrofurazone residues can be determined. The structure of nitrofurazone metabolites in vivo and particular proteins to which they are bound are not known. These proteins with altered structure due to the presence of the drug metabolites can be considered as potential alternative biomarkers of nitrofurazone abuse. The proteins implicated in the in vivo binding of nitrofurazone were separated and identified. A crude mixture of proteins extracted from the liver of a rat treated with the drug was separated using a series of different techniques such as preparative isoelectric focusing and size exclusion HPLC. Multiple fractions were assayed by LC-MS/MS to detect the presence of SEM. The proteins containing SEM residues were identified by peptide mass mapping using trypsin digestion and MALDI-TOF. The first protein identified as containing high concentration of SEM was albumin. It was also shown that low molecular weight species within a protein mixture whose main constituent was glutathione S-transferase contained a high concentration of SEM. The chemical composition of these components is under investigation. Preliminary data suggest the SEM forms part of a nitrofurazone metabolite conjugated to glutathione. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We describe in this report the characterization of the recently discovered N-linked glycosylation locus of the human bacterial pathogen Campylobacter jejuni, the first such system found in a species from the domain Bacteria. We exploited the ability of this locus to function in Escherichia coli to demonstrate through mutational and structural analyses that variant glycan structures can be transferred onto protein indicating the relaxed specificity of the putative oligosaccharyltransferase PglB. Structural data derived from these variant glycans allowed us to infer the role of five individual glycosyltransferases in the biosynthesis of the N-linked heptasaccharide. Furthermore, we show that C. jejuni- and E. coli-derived pathways can interact in the biosynthesis of N-linked glycoproteins. In particular, the E. coli encoded WecA protein, a UDP-GlcNAc: undecaprenylphosphate GlcNAc-1-phosphate transferase involved in glycolipid biosynthesis, provides for an alternative N-linked heptasaccharide biosynthetic pathway bypassing the requirement for the C. jejuni-derived glycosyltransferase PglC. This is the first experimental evidence that biosynthesis of the N-linked glycan occurs on a lipid-linked precursor prior to transfer onto protein. These findings provide a framework for understanding the process of N-linked protein glycosylation in Bacteria and for devising strategies to exploit this system for glycoengineering.
Resumo:
We report on another alternative sensing platform for the detection of protein biomarker (PSA–ACT complex) based on homogenous growth of Au nanocrystals in solution phase. The immuno-recognition event is translated into the gold nanoparticle growth signal which can be intuitively recognized by an unaided eye, or quantitatively measured by an UV–vis spectrophotometric analysis. Surface plasmonic signature and kinetics of the Au nanogrowth in the homogenous phase containing of HAuCl4, AA, and CTAB have also been studied to provide suitable parameters for the immunoassay. As a result, detection limit of PSA–ACT complex was determined to be 10 fM. The result indicated that this is a very sensitive, robust, simple, and economic strategy to detect protein biomarkers, and it has great potential to detect other biological interactions.
Resumo:
A commercial Bacillus anthracis (Anthrax) whole genome protein microarray has been used to identify immunogenic Anthrax proteins (IAP) using sera from groups of donors with (a) confirmed B. anthracis naturally acquired cutaneous infection, (b) confirmed B. anthracis intravenous drug use-acquired infection, (c) occupational exposure in a wool-sorters factory, (d) humans and rabbits vaccinated with the UK Anthrax protein vaccine and compared to naïve unexposed controls. Anti-IAP responses were observed for both IgG and IgA in the challenged groups; however the anti-IAP IgG response was more evident in the vaccinated group and the anti-IAP IgA response more evident in the B. anthracis-infected groups. Infected individuals appeared somewhat suppressed for their general IgG response, compared with other challenged groups. Immunogenic protein antigens were identified in all groups, some of which were shared between groups whilst others were specific for individual groups. The toxin proteins were immunodominant in all vaccinated, infected or other challenged groups. However, a number of other chromosomally-located and plasmid encoded open reading frame proteins were also recognized by infected or exposed groups in comparison to controls. Some of these antigens e.g., BA4182 are not recognized by vaccinated individuals, suggesting that there are proteins more specifically expressed by live Anthrax spores in vivo that are not currently found in the UK licensed Anthrax Vaccine (AVP). These may perhaps be preferentially expressed during infection and represent expression of alternative pathways in the B. anthracis "infectome." These may make highly attractive candidates for diagnostic and vaccine biomarker development as they may be more specifically associated with the infectious phase of the pathogen. A number of B. anthracis small hypothetical protein targets have been synthesized, tested in mouse immunogenicity studies and validated in parallel using human sera from the same study.
Resumo:
DOG1 is a key regulator of seed dormancy in Arabidopsis and other plants. Interestingly, the C-terminus of DOG1 is either absent or not conserved in many plant species. Here, we show that in Arabidopsis DOG1 transcript is subject to alternative polyadenylation. In line with this, mutants in RNA 3' processing complex display weakened seed dormancy in parallel with defects in DOG1 proximal polyadenylation site selection, suggesting that the short DOG1 transcript, is functional. This is corroborated by the finding that the proximally polyadenylated short DOG1 mRNA is translated in vivo and complements the dog1 mutation. In summary, our findings indicate that the short DOG1 protein isoform produced from the proximally polyadenylated DOG1 mRNA is a key player in the establishment of seed dormancy in Arabidopsis and characterize a set of mutants in RNA 3' processing complex required for production of proximally polyadenylated functional DOG1 transcript.
Resumo:
Purpose: We performed a multi-centre phase I study to assess the safety, pharmacokinetics (PK) and pharmacodynamics (PD) of the orally available small molecule mitogen-activated protein kinase kinase (MEK) 1/2 inhibitor, WX-554, and to determine the optimal biological dose for subsequent trials.
Experimental design: Patients with treatment-refractory, advanced solid tumours, with adequate performance status and organ function were recruited to a dose-escalation study in a standard 3 + 3 design. The starting dose was 25 mg orally once weekly with toxicity, PK and PD guided dose-escalation with potential to explore alternative schedules.
Results: Forty-one patients with advanced solid tumours refractory to standard therapies and with adequate organ function were recruited in eight cohorts up to doses of 150 mg once weekly and 75 mg twice weekly. No dose-limiting toxicities were observed during the study, and a maximum tolerated dose (MTD) was not established. The highest dose cohorts demonstrated sustained inhibition of extracellular signal-regulated kinase (ERK) phosphorylation in peripheral blood mononuclear cells following ex-vivo phorbol 12-myristate 13-acetate stimulation. There was a decrease of 70 ± 26% in mean phosphorylated (p)ERK in C1 day 8 tumour biopsies when compared with pre-treatment tumour levels in the 75 mg twice a week cohort. Prolonged stable disease (>6 months) was seen in two patients, one with cervical cancer and one with ampullary carcinoma.
Conclusions: WX-554 was well tolerated, and an optimal biological dose was established for further investigation in either a once or twice weekly regimens. The recommended phase 2 dose is 75 mg twice weekly.