240 resultados para alpha-tocopherol


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The liver preferentially secretes alpha-tocopherol into plasma under the control of the hepatic alpha-tocopherol transfer protein (alpha-TTP). alpha-TTP-null mice (Ttpa(-/-) mice) are vitamin E deficient, therefore were used for investigations of in vivo responses to sub-normal tissue alpha-tocopherol concentrations during inflammation. Increased basal oxidative stress in Ttpa(-/-) mice was documented by increased plasma lipid peroxidation, and superoxide production by bone marrow-derived neutrophils stimulated in vitro with phorbol 12-myristate 13-acetate. Lipopolysaccharide (LPS) injected intraperitoneally induced increases in lung and liver HO-1 and iNOS, as well as plasma NO(x) in Ttpa(+/+) mice. LPS induced more modest increases in these markers in Ttpa(-/-) mice, while more marked increases in plasma IL-10 and lung lavage TNF alpha were observed. Taken together, these results demonstrate that alpha-tocopherol is important for proper modulation of inflammatory responses and that sub-optimal alpha-tocopherol concentrations may derange inflammatory-immune responses.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ataxia with vitamin E deficiency is caused by mutations in a-tocopherol transfer protein (a-TTP) gene and it can be experimentally generated in mice by a-TTP gene inactivation (a-TTP-KO). This study compared a-tocopherol (a-T) concentrations of five brain regions and of four peripheral organs from 5 months old, male and female, wild-type (WT) and a-TTP-KO mice. All brain regions of female WT mice contained significantly higher a-T than those from WT males. a-T concentration in the cerebellum was significantly lower than that in other brain regions of WT mice. These sex and regional differences in brain a-T concentrations do not appear to be determined by a-TTP expression which was undetectable in all brain regions. All the brain regions of a-TTP-KO mice were severely depleted in a-T. The concentration of another endogenous antioxidant, total glutathione, was unaffected by gender but was decreased slightly but significantly in most brain regions of a-TTP-KO mice. The results show that both gender and the hepatic a-TTP, but not brain a-TTP gene expression are important in determining a-T concentrations within the brain. Interestingly, functional abnormality (ataxia) develops only very late in a-TTP-KO mice in spite of the severe a-tocopherol deficiency in the brain starting at an early age.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We determined whether pre-enrichment of low density lipoproteins (LDL) with alpha-tocopherol mitigates their adverse effects, following in vitro glycation, oxidation or glycoxidation, towards cultured bovine retinal capillary endothelial cells (RCEC) and pericytes.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: High density lipoproteins (HDL) have considerable potential for improving cardiovascular health. Additionally, epidemiological studies have identified an inverse relationship between a-tocopherol intake and cardiovascular disease, which has not been translated in randomised controlled trials. Objectives: This study assessed if increased α-tocopherol within HDL2 and HDL3 (HDL2&3) influenced their antiatherogenic potential. In the first of two in vitro investigations, the oxidation potential of HDL2&3 was assessed when α-tocopherol was added following their isolation. In the second, their oxidation potential was assessed when HDL2&3 were isolated from serum pre-incubated with α-tocopherol. Additionally, a 6-week placebo-controlled intervention with α-tocopherol assessed if α-tocopherol influenced the oxidation potential and activities of HDL2&3-associated enzymes, paraoxonase-1 (PON-1) and lecithin cholesteryl acyltransferase (LCAT). Results: Conflicting results arose from the in vitro investigations, whereby increasing concentrations of α-tocopherol protected HDL2&3 against oxidation in the post-incubated HDL2&3, and promoted HDL2&3-oxidation when they were isolated from serum pre-incubated with α-tocopherol. Following the 6-week placebo-controlled investigation, α-tocopherol increased in HDL2&3, while HDL2&3 became more susceptible to oxidation, additionally the activities of HDL2&3-PON-1 and HDL2-LCAT decreased. Conclusion: These results have shown for the first time that α-tocopherol induces changes to HDL2&3, which could contribute to the pathophysiology of cardiovascular disease.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Earlier studies in adults have indicated that increased oxidative stress may occur in the blood and airways of asthmatic subjects. Therefore the aim of this study was to compare the concentrations of antioxidants and protein carbonyls in bronchoalveolar lavage fluid of clinically stable atopic asthmatic children (AA, n = 78) with our recently published reference intervals for nonasthmatic children (C, n = 124). Additionally, lipid peroxidation products (malondialdehyde) in bronchoalveolar lavage fluid and several antioxidants in plasma were determined. Bronchoalveolar lavage concentrations (median and interquartile range) of ascorbate [AA: 0.433 (0.294-0.678) versus C: 0.418 (0.253-0.646) micromol/L], urate [AA: 0.585 (0.412-0.996) versus C: 0.511 (0.372-0.687) micromol/L], alpha-tocopherol [AA: 0.025 (0.014-0.031) versus C: 0.017 (0.017-0.260) micromol/L], and oxidized proteins as reflected by protein carbonyls [AA: 1.222 (0.970-1.635) versus C: 1.243 (0.813-1.685) nmol/mg protein] were similar in both groups (p > 0.05 in all cases). The concentration of protein carbonyls correlated significantly with the number of eosinophils, mast cells, and macrophages in AA children only. Concentrations of oxidized proteins and lipid peroxidation products (malondialdehyde) correlated significantly in AA children (r = 0.614, n = 11, p = 0.044). Serum concentrations of ascorbate, urate, retinol, alpha-tocopherol, beta-carotene, and lycopene were similar in both groups whereas alpha-carotene was significantly reduced in asthmatics. Overall, increased bronchoalveolar lavage eosinophils indicate ongoing airway inflammation, which may increase oxidatively modified proteins as reflected by increased protein carbonyl concentrations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Alpha-tocopherol (aT), the predominant form of vitamin E in mammals, is thought to prevent oxidation of polyunsaturated fatty acids. In the lung, aT is perceived to be accumulated in alveolar type II cells and secreted together with surfactant into the epithelial lining fluid. Conventionally, determination of aT and related compounds requires extraction with organic solvents. This study describes a new method to determine and image the distribution of aT and related compounds within cells and tissue sections using the light-scattering technique of Raman microscopy to enable high spatial as well as spectral resolution. This study compared the nondestructive analysis by Raman microscopy of vitamin E, in particular aT, in biological samples with data obtained using conventional HPLC analysis. Raman spectra were acquired at spatial resolutions of 2-0.8 microm. Multivariate analysis techniques were used for analyses and construction of corresponding maps showing the distribution of aT, alpha-tocopherol quinone (aTQ), and other constituents (hemes, proteins, DNA, and surfactant lipids). A combination of images enabled identification of colocalized constituents (heme/aTQ and aT/surfactant lipids). Our data demonstrate the ability of Raman microscopy to discriminate between different tocopherols and oxidation products in biological specimens without sample destruction. By enabling the visualization of lipid-protein interactions, Raman microscopy offers a novel method of investigating biological characterization of lipid-soluble compounds, including those that may be embedded in biological membranes such as aT.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Recent evidence suggests that HDL can directly inhibit LDL oxidation, a key early stage in atherogenesis. Patients with chronic renal failure are at increased cardiovascular risk, have reduced HDL levels and altered HDL composition. We have therefore investigated whether compositional changes in HDL lead to decreased HDL antioxidant capacity in these patients. In comparison to control subject HDL, patient HDL contained less total cholesterol, cholesterol esters, phospholipids and alpha-tocopherol. LDL, HDL and LDL + HDL were standardised for protein and oxidised in the presence of Cu2+. The rate of propagation during HDL oxidation was reduced in the patient group (3.28 +/- 0.65 x 10(-5) vs. 4.60 +/- 0.97 x 10(-5) abs. U/min, P

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Many degenerative diseases are associated with increased oxidative stress. Creatine has the potential to act as an indirect and direct antioxidant; however, limited data exist to evaluate the antioxidant capabdities of creatine supplementation within in vivo human systems. This study aimed to investigate the effects of oral creatine supplementation on markers of oxidative stress and antioxidant defenses following exhaustive cycling exercise. Following preliminary testing and two additional familiarization sessions, 18 active males repeated two exhaustive incremental cycling trials (T1 and T2) separated by exactly 7 days. The subjects were assigned, in a double-blind manner, to receive either 20 g of creatine (Cr) or a placebo (P) for the 5 days preceding T2. Breath-by-breath respiratory data and heart rate were continually recorded throughout the exercise protocol and blood samples were obtained at rest (preexercise), at the end of exercise (postexercise), and the day following exercise (post24 h). Serum hypdroperoxide concentrations were elevated at postexercise by 17 +/- 5% above preexercise values (p = 0.030). However, supplementation did not influence lipid peroxidation (serum hypdroperoxide concentrations), resistance of low density lipoprotein to oxidative stress (t(1/2max) LDL oxidation) and plasma concentrations of non-enzymatic antioxidants (retinol, alpha-carotene, beta-carotene, alpha-tocopherol, gamma-tocopherol, lycopene and vitamin Q. Heart rate and oxygen uptake responses to exercise were not affected by supplementation. These findings suggest that short-term creatine supplementation does not enhance non-enzymatic antioxidant defence or protect against lipid peroxidation induced by exhaustive cycling in healthy males.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Antioxidant species may act in vivo to decrease oxidative damage to DNA, protein and lipids thus reducing the risk of coronary heart disease and cancer. Phytoestrogens are plant compounds which are a major component of traditional Asian diets and which may be protective against certain hormone-dependent cancers (breast and prostate) and against coronary heart disease. They may also be able to function as antioxidants, scavenging potentially harmful free radicals. In this study, the effects of the isoflavonoids (a class of phytoestrogen) genistein and equol on hydrogen peroxide-mediated DNA damage in human lymphocytes were determined using alkaline single-cell gel electrophoresis (the comet assay). Treatment with hydrogen peroxide significantly increased the levels of DNA strand breaks. Pre-treatment of the cells with both genistein and equol offered protection against this damage at concentrations within the physiological range. This protection was greater than that offered by addition of the known antioxidant vitamins ascorbic acid and alpha -tocopherol, or the compounds 17 beta -oestradiol and Tamoxifen which have similar structures to isoflavonoids and are known to have weak antioxidant properties. These findings are consistent with the hypothesis that phytoestrogens can, under certain conditions, function as antioxidants and protect against oxidatively-induced DNA damage. (C) 2001 Elsevier Science B.V. All rights reserved.