2 resultados para alfalfa silage


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A diverse range of concentrate allocation strategies are adopted on dairy farms. The objectives of this study were to examine the effects on cow performance [dry matter (DM) intake (DMI), milk yield and composition, body tissue changes, and fertility] of adopting 2 contrasting concentrate allocation strategies over the first 140 d of lactation. Seventy-seven Holstein-Friesian dairy cows were allocated to 1 of 2 concentrate allocation strategies at calving, namely group or individual cow. Cows on the group strategy were offered a mixed ration comprising grass silage and concentrates in a 50:50 ratio on a DM basis. Cows on the individual cow strategy were offered a basal mixed ration comprising grass silage and concentrates (the latter included in the mix to achieve a mean intake of 6 kg/cow per day), which was formulated to meet the cow’s energy requirements for maintenance plus 24 kg of milk/cow per day. Additional concentrates were offered via an out-of-parlor feeding system, with the amount offered adjusted weekly based on each individual cow’s milk yield during the previous week. In addition, all cows received a small quantity of straw in the mixed ration part of the diet (approximately 0.3 kg/cow per day), plus 0.5 kg of concentrate twice daily in the milking parlor. Mean concentrate intakes over the study period were similar with each of the 2 allocation strategies (11.5 and 11.7 kg of DM/cow per day for group and individual cow, respectively), although the pattern of intake with each treatment differed over time. Concentrate allocation strategy had no effect on either milk yield (39.3 and 38.0 kg/d for group and individual cow, respectively), milk composition, or milk constituent yield. The milk yield response curves with each treatment were largely aligned with the concentrate DMI curves. Cows on the individual cow treatment had a greater range of concentrate DMI and milk yields than those on the group treatment. With the exception of a tendency for cows on the individual cow treatment to lose more body weight to nadir than cows on the group treatment, concentrate allocation strategy had little effect on either body weight or body condition score over the experimental period. Cows on the individual cow treatment had a higher pregnancy rate to first and second service and tended to have a higher 100-d in calf rate than cows on the group treatment. This study demonstrates that concentrate allocation strategy had little effect on overall production performance.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Thirty-six 12-month-old hill hoggets were used in a 2 genotype (18 Scottish Blackface vs. 18 Swaledale×Scottish Blackface)×3 diet (fresh vs. ensiled vs. pelleted ryegrass) factorial design experiment to evaluate the effects of hogget genotype and forage type on enteric methane (CH4) emissions and nitrogen (N) utilisation. The hoggets were offered 3 diets ad libitum with no concentrate supplementation in a single period study with 6 hoggets for each of the 6 genotype×diet combinations (n=6). Fresh ryegrass was harvested daily in the morning. Pelleted ryegrass was sourced from a commercial supplier (Aylescott Driers & Feeds, Burrington, UK) and the ryegrass silage was ensiled with Ecosyl (Lactobacillus plantarum, Volac International Limited, Hertfordshire, UK) as an additive. The hoggets were housed in individual pens for at least 14 d before being transferred to individual respiration chambers for a further 4 d with feed intake, faeces and urine outputs and CH4 emissions measured. There was no significant interaction between genotype and forage type on any parameter evaluated. Sheep offered pelleted grass had greater feed intake (e.g. DM, energy and N) but less energy and nutrient apparent digestibility (e.g. DM, N and neutral detergent fibre (NDF)) than those given fresh grass or grass silage (P<0.001). Feeding pelleted grass, rather than fresh grass or grass silage, reduced enteric CH4 emissions as a proportion of DM intake and gross energy (GE) intake (P<0.01). Sheep offered fresh grass had a significantly lower acid detergent fibre (ADF) apparent digestibility, and CH4 energy output (CH4-E) as a proportion of GE intake than those offered grass silage (P<0.001). There was no significant difference, in CH4 emission rate or N utilisation efficiency when compared between Scottish Blackface and Swaledale × Scottish Blackface. Linear and multiple regression techniques were used to develop relationships between CH4 emissions or N excretion and dietary and animal variables using data from sheep offered fresh ryegrass and grass silage. The equation relating CH4-E (MJ/d) to GE intake (GEI, MJ/d), energy apparent digestibility (DE/GE) and metabolisability (ME/GE) resulted in a high r2 (CH4-E=0.074 GEI+9.2 DE/GE−10.2 ME/GE−0.37, r2=0.93). N intake (NI) was the best predictor for manure N excretion (Manure N=0.66 NI+0.96, r2=0.85). The use of these relationships can potentially improve the precision and decrease the uncertainty in predicting CH4 emissions and N excretion for sheep production systems managed under the current feeding conditions.