3 resultados para air assisted


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Plug-assisted thermoforming produces a wide range of polymer products through a combination of deformation by air pressure and contact with tool surfaces. In this paper the role of tool/sheet contact in determining the process output is investigated. A combination of thermoforming, friction and heat transfer tests were carried out on common tool and sheet materials. The results show that the typical friction coefficients for the material combinations are within the range 0.1 to 0.3, but the values rise sharply on approaching thermoforming temperatures. Thermal imaging tests demonstrate that all of the plug materials significantly cool the heated sheet on contact, even over very short periods of time. The temperature of the plug is very important. At low plug temperatures heat transfer effects predominate, whereas at high plug temperatures friction effects predominate. A plug temperature of approximately 100oC balances these effects and creates the most effective material distribution.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article describes the results of a comprehensive investigation to determine the link between process parameters and observed wall thickness output for the plug-assisted thermoforming process. The overall objective of the work was to systematically investigate the process parameters that may be adjusted during production to control the wall thickness distribution of parts manufactured by plug-assisted thermoforming. The parameters investigated were the sheet temperature, plug temperature, plug speed, plug displacement, plug shape, and air pressure. As well as quantifying the effects of each parameter on the wall thickness distribution, a further aim of the work was to improve the understanding of the physical mechanisms of deformation of the sheet during the different stages of the process. The process parameters shown to have the greatest effect on experimentally determined wall thickness distribution were the plug displacement, sheet temperature, plug temperature, and plug shape. It is proposed that during the plug-assisted thermoforming of polystyrene the temperature dependent friction between the plug and sheet surface was the most important factor in determining product wall thickness distribution, whereas heat transfer was shown to play a less important role. POLYM. ENG. SCI., 2010. © 2010 Society of Plastics Engineers